rust-book-cn/nostarch/chapter04.md
2016-12-02 13:53:03 -05:00

1245 lines
44 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

[TOC]
# Understanding Ownership
Ownership is Rusts most unique feature, and it enables Rust to make memory
safety guarantees without needing a garbage collector. Therefore, its
important to understand how ownership works in Rust. In this chapter well talk
about ownership as well as several related features: borrowing, slices, and how
Rust lays data out in memory.
## What Is Ownership?
Rusts central feature is *ownership*. Although the feature is straightforward
to explain, it has deep implications for the rest of the language.
All programs have to manage the way they use a computers memory while running.
Some languages have garbage collection that constantly looks for no longer used
memory as the program runs; in other languages, the programmer must explicitly
allocate and free the memory. Rust uses a third approach: memory is managed
through a system of ownership with a set of rules that the compiler checks at
compile time. No run-time costs are incurred for any of the ownership features.
Because ownership is a new concept for many programmers, it does take some time
to get used to. The good news is that the more experienced you become with Rust
and the rules of the ownership system, the more youll be able to naturally
develop code that is safe and efficient. Keep at it!
When you understand ownership, youll have a solid foundation for understanding
the features that make Rust unique. In this chapter, youll learn ownership by
working through some examples that focus on a very common data structure:
strings.
PROD: START BOX
### The Stack and the Heap
In many programming languages, we dont have to think about the stack and the
heap very often. But in a systems programming language like Rust, whether a
value is on the stack or the heap has more of an effect on how the language
behaves and why we have to make certain decisions. Well describe parts of
ownership in relation to the stack and the heap later in this chapter, so here
is a brief explanation in preparation.
Both the stack and the heap are parts of memory that is available to your code
to use at runtime, but they are structured in different ways. The stack stores
values in the order it gets them and removes the values in the opposite order.
This is referred to as *last in, first out*. Think of a stack of plates: when
you add more plates, you put them on top of the pile, and when you need a
plate, you take one off the top. Adding or removing plates from the middle or
bottom wouldnt work as well! Adding data is called *pushing onto the stack*,
and removing data is called *popping off the stack*.
The stack is fast because of the way it accesses the data: it never has to
search for a place to put new data or a place to get data from because that
place is always the top. Another property that makes the stack fast is that all
data on the stack must take up a known, fixed size.
For data with a size unknown to us at compile time or a size that might change,
we can store data on the heap instead. The heap is less organized: when we put
data on the heap, we ask for some amount of space. The operating system finds
an empty spot somewhere in the heap that is big enough, marks it as being in
use, and returns to us a pointer to that location. This process is called
*allocating on the heap*, and sometimes we abbreviate the phrase as just
“allocating.” Pushing values onto the stack is not considered allocating.
Because the pointer is a known, fixed size, we can store the pointer on the
stack, but when we want the actual data, we have to follow the pointer.
Think of being seated at a restaurant. When you enter, you state the number of
people in your group, and the staff finds an empty table that fits everyone and
leads you there. If someone in your group comes late, they can ask where youve
been seated to find you.
Accessing data in the heap is slower than accessing data on the stack because
we have to follow a pointer to get there. Contemporary processors are faster if
they jump around less in memory. Continuing the analogy, consider a server at a
restaurant taking orders from many tables. Its most efficient to get all the
orders at one table before moving on to the next table. Taking an order from
table A, then an order from table B, then one from A again, and then one from B
again would be a much slower process. By the same token, a processor can do its
job better if it works on data thats close to other data (as it is on the
stack) rather than farther away (as it can be on the heap). Allocating a large
amount of space on the heap can also take time.
When our code calls a function, the values passed into the function (including,
potentially, pointers to data on the heap) and the functions local variables
get pushed onto the stack. When the function is over, those values get popped
off the stack.
Keeping track of what parts of code are using what data on the heap, minimizing
the amount of duplicate data on the heap, and cleaning up unused data on the
heap so we dont run out of space are all problems that ownership addresses.
Once you understand ownership, you wont need to think about the stack and the
heap very often, but knowing that managing heap data is why ownership exists
can help explain why it works the way it does.
PROD: END BOX
### Ownership Rules
First, lets take a look at the ownership rules. Keep these rules in mind as we
work through the examples that illustrate the rules:
1. Each value in Rust has a variable thats called its *owner*.
2. There can only be one owner at a time.
3. When the owner goes out of scope, the value will be dropped.
### Variable Scope
Weve walked through an example of a Rust program already in Chapter 2. Now
that were past basic syntax, we wont include all the `fn main() {` code in
examples, so if youre following along, youll have to put the following
examples inside a `main` function manually. As a result, our examples will be a
bit more concise, letting us focus on the actual details rather than
boilerplate code.
As a first example of ownership, well look at the *scope* of some variables. A
scope is the range within a program for which an item is valid. Lets say we
have a variable that looks like this:
```rust
let s = "hello";
```
The variable `s` refers to a string literal, where the value of the string is
hardcoded into the text of our program. The variable is valid from the point at
which its declared until the end of the current *scope*. Listing 4-1 has
comments annotating where the variable `s` is valid:
```rust
{ // s is not valid here, its not yet declared
let s = "hello"; // s is valid from this point forward
// do stuff with s
} // this scope is now over, and s is no longer valid
```
<caption>
Listing 4-1: A variable and the scope in which it is valid
</caption>
In other words, there are two important points in time here:
1. When `s` comes *into scope*, it is valid.
1. It remains so until it goes *out of scope*.
At this point, the relationship between scopes and when variables are valid is
similar to other programming languages. Now well build on top of this
understanding by introducing the `String` type.
### The `String` Type
To illustrate the rules of ownership, we need a data type that is more complex
than the ones we covered in Chapter 3. All the data types weve looked at
previously are stored on the stack and popped off the stack when their scope is
over, but we want to look at data that is stored on the heap and explore how
Rust knows when to clean up that data.
Well use `String` as the example here and concentrate on the parts of `String`
that relate to ownership. These aspects also apply to other complex data types
provided by the standard library and that you create. Well discuss `String` in
more depth in Chapter 8.
Weve already seen string literals, where a string value is hardcoded into our
program. String literals are convenient, but they arent always suitable for
every situation in which you want to use text. One reason is that theyre
immutable. Another is that not every string value can be known when we write
our code: for example, what if we want to take user input and store it? For
these situations, Rust has a second string type, `String`. This type is
allocated on the heap and as such is able to store an amount of text that is
unknown to us at compile time. You can create a `String` from a string literal
using the `from` function, like so:
```rust
let s = String::from("hello");
```
The double colon (`::`) is an operator that allows us to namespace this
particular `from` function under the `String` type rather than using some sort
of name like `string_from`. Well discuss this syntax more in the “Method
Syntax” section of Chapter 5 and when we talk about namespacing with modules in
Chapter 7.
This kind of string *can* be mutated:
```rust
let mut s = String::from("hello");
s.push_str(", world!"); // push_str() appends a literal to a String
println!("{}", s); // This will print `hello, world!`
```
So, whats the difference here? Why can `String` be mutated but literals
cannot? The difference is how these two types deal with memory.
### Memory and Allocation
In the case of a string literal, we know the contents at compile time so the
text is hardcoded directly into the final executable, making string literals
fast and efficient. But these properties only come from its immutability.
Unfortunately, we cant put a blob of memory into the binary for each piece of
text whose size is unknown at compile time and whose size might change while
running the program.
With the `String` type, in order to support a mutable, growable piece of text,
we need to allocate an amount of memory on the heap, unknown at compile time,
to hold the contents. This means:
1. The memory must be requested from the operating system at runtime.
2. We need a way of returning this memory to the operating system when were
done with our `String`.
That first part is done by us: when we call `String::from`, its implementation
requests the memory it needs. This is pretty much universal in programming
languages.
However, the second part is different. In languages with a *garbage collector
(GC)*, the GC keeps track and cleans up memory that isnt being used anymore,
and we, as the programmer, dont need to think about it. Without a GC, its the
programmers responsibility to identify when memory is no longer being used and
call code to explicitly return it, just as we did to request it. Doing this
correctly has historically been a difficult programming problem. If we forget,
well waste memory. If we do it too early, well have an invalid variable. If
we do it twice, thats a bug too. We need to pair exactly one `allocate` with
exactly one `free`.
Rust takes a different path: the memory is automatically returned once the
variable that owns it goes out of scope. Heres a version of our scope example
from Listing 4-1 using a `String` instead of a string literal:
```rust
{
let s = String::from("hello"); // s is valid from this point forward
// do stuff with s
} // this scope is now over, and s is no
// longer valid
```
There is a natural point at which we can return the memory our `String` needs
to the operating system: when `s` goes out of scope. When a variable goes out
of scope, Rust calls a special function for us. This function is called `drop`,
and its where the author of `String` can put the code to return the memory.
Rust calls `drop` automatically at the closing `}`.
> Note: In C++, this pattern of deallocating resources at the end of an item's
lifetime is sometimes called *Resource Acquisition Is Initialization (RAII)*.
The `drop` function in Rust will be familiar to you if youve used RAII
patterns.
This pattern has a profound impact on the way Rust code is written. It may seem
simple right now, but the behavior of code can be unexpected in more
complicated situations when we want to have multiple variables use the data
weve allocated on the heap. Lets explore some of those situations now.
#### Ways Variables and Data Interact: Move
Multiple variables can interact with the same data in different ways in Rust.
Lets look at an example using an integer in Listing 4-2:
```rust
let x = 5;
let y = x;
```
<caption>
Listing 4-2: Assigning the integer value of variable `x` to `y`
</caption>
We can probably guess what this is doing based on our experience with other
languages: “Bind the value `5` to `x`; then make a copy of the value in `x` and
bind it to `y`.” We now have two variables, `x` and `y`, and both equal `5`.
This is indeed what is happening because integers are simple values with a
known, fixed size, and these two `5` values are pushed onto the stack.
Now lets look at the `String` version:
```rust
let s1 = String::from("hello");
let s2 = s1;
```
This looks very similar to the previous code, so we might assume that the way
it works would be the same: that is, the second line would make a copy of the
value in `s1` and bind it to `s2`. But this isnt quite what happens.
To explain this more thoroughly, lets look at what `String` looks like under
the covers in Figure 4-3. A `String` is made up of three parts, shown on the
left: a pointer to the memory that holds the contents of the string, a length,
and a capacity. This group of data is stored on the stack. On the right is the
memory on the heap that holds the contents.
<img alt="String in memory" src="img/trpl04-01.svg" class="center" style="width: 50%;" />
<caption>
Figure 4-3: Representation in memory of a `String` holding the value `"hello"`
bound to `s1`
</caption>
The length is how much memory, in bytes, the contents of the `String` is
currently using. The capacity is the total amount of memory, in bytes, that the
`String` has received from the operating system. The difference between length
and capacity matters, but not in this context, so for now, its fine to ignore
the capacity.
When we assign `s1` to `s2`, the `String` data is copied, meaning we copy the
pointer, the length, and the capacity that are on the stack. We do not copy the
data on the heap that the pointer refers to. In other words, the data
representation in memory looks like Figure 4-4.
<img alt="s1 and s2 pointing to the same value" src="img/trpl04-02.svg" class="center" style="width: 50%;" />
<caption>
Figure 4-4: Representation in memory of the variable `s2` that has a copy of
the pointer, length, and capacity of `s1`
</caption>
The representation does *not* look like Figure 4-5, which is what memory would
look like if Rust instead copied the heap data as well. If Rust did this, the
operation `s2 = s1` could potentially be very expensive in terms of runtime
performance if the data on the heap was large.
<img alt="s1 and s2 to two places" src="img/trpl04-03.svg" class="center" style="width: 50%;" />
<caption>
Figure 4-5: Another possibility of what `s2 = s1` might do if Rust copied the
heap data as well
</caption>
Earlier, we said that when a variable goes out of scope, Rust automatically
calls the `drop` function and cleans up the heap memory for that variable. But
Figure 4-4 shows both data pointers pointing to the same location. This is a
problem: when `s2` and `s1` go out of scope, they will both try to free the
same memory. This is known as a *double free* error and is one of the memory
safety bugs we mentioned previously. Freeing memory twice can lead to memory
corruption, which can potentially lead to security vulnerabilities.
To ensure memory safety, theres one more detail to what happens in this
situation in Rust. Instead of trying to copy the allocated memory, Rust
considers `s1` to no longer be valid and therefore, Rust doesnt need to free
anything when `s1` goes out of scope. Check out what happens when you try to
use `s1` after `s2` is created:
```rust,ignore
let s1 = String::from("hello");
let s2 = s1;
println!("{}", s1);
```
Youll get an error like this because Rust prevents you from using the
invalidated reference:
```text
5:22 error: use of moved value: `s1` [E0382]
println!("{}", s1);
^~
5:24 note: in this expansion of println! (defined in <std macros>)
3:11 note: `s1` moved here because it has type `collections::string::String`,
which is moved by default
let s2 = s1;
^~
```
If youve heard the terms “shallow copy” and “deep copy” while working with
other languages, the concept of copying the pointer, length, and capacity
without copying the data probably sounds like a shallow copy. But because Rust
also invalidates the first variable, instead of calling this a shallow copy,
its known as a *move*. Here we would read this by saying that `s1` was *moved*
into `s2`. So what actually happens is shown in Figure 4-6.
<img alt="s1 moved to s2" src="img/trpl04-04.svg" class="center" style="width: 50%;" />
<caption>
Figure 4-6: Representation in memory after `s1` has been invalidated
</caption>
That solves our problem! With only `s2` valid, when it goes out of scope, it
alone will free the memory, and were done.
In addition, theres a design choice thats implied by this: Rust will never
automatically create “deep” copies of your data. Therefore, any *automatic*
copying can be assumed to be inexpensive in terms of runtime performance.
#### Ways Variables and Data Interact: Clone
If we *do* want to deeply copy the heap data of the `String`, not just the
stack data, we can use a common method called `clone`. Well discuss method
syntax in Chapter 5, but because methods are a common feature in many
programming languages, youve probably seen them before.
Heres an example of the `clone` method in action:
```rust
let s1 = String::from("hello");
let s2 = s1.clone();
println!("s1 = {}, s2 = {}", s1, s2);
```
This works just fine and is how you can explicitly produce the behavior shown
in Figure 4-4, where the heap data *does* get copied.
When you see a call to `clone`, you know that some arbitrary code is being
executed and that code may be expensive. Its a visual indicator that something
different is going on.
#### Stack-Only Data: Copy
Theres another wrinkle we havent talked about yet. This code using integers,
part of which was shown earlier in Listing 4-2, works and is valid:
```rust
let x = 5;
let y = x;
println!("x = {}, y = {}", x, y);
```
But this code seems to contradict what we just learned: we dont have a call to
`clone`, but `x` is still valid and wasnt moved into `y`.
The reason is that types like integers that have a known size at compile time
are stored entirely on the stack, so copies of the actual values are quick to
make. That means theres no reason we would want to prevent `x` from being
valid after we create the variable `y`. In other words, theres no difference
between deep and shallow copying here, so calling `clone` wouldnt do anything
differently from the usual shallow copying and we can leave it out.
Rust has a special annotation called the `Copy` trait that we can place on
types like integers that are stored on the stack (well talk more about traits
in Chapter 10). If a type has the `Copy` trait, an older variable is still
usable after assignment. Rust wont let us annotate a type with the `Copy`
trait if the type, or any of its parts, has implemented the `D``rop` trait. If
the type needs something special to happen when the value goes out of scope and
we add the `Copy` annotation to that type, well get a compile time error.
So what types are `Copy`? You can check the documentation for the given type to
be sure, but as a general rule, any group of simple scalar values can be
`Copy`, and nothing that requires allocation or is some form of resource is
`Copy`. Here are some of the types that are `Copy`:
* All the integer types, like `u32`.
* The boolean type, `bool`, with values `true` and `false`.
* All the floating point types, like `f64`.
* Tuples, but only if they contain types that are also `Copy`. `(i32, i32)` is
`Copy`, but `(i32, String)` is not.
### Ownership and Functions
The semantics for passing a value to a function are similar to assigning a
value to a variable. Passing a variable to a function will move or copy, just
like assignment. Listing 4-7 has an example with some annotations showing where
variables go into and out of scope:
Filename: src/main.rs
```rust
fn main() {
let s = String::from("hello"); // s comes into scope.
takes_ownership(s); // s's value moves into the function...
// ... and so is no longer valid here.
let x = 5; // x comes into scope.
makes_copy(x); // x would move into the function,
// but i32 is Copy, so its okay to still
// use x afterward.
} // Here, x goes out of scope, then s. But since s's value was moved, nothing
// special happens.
fn takes_ownership(some_string: String) { // some_string comes into scope.
println!("{}", some_string);
} // Here, some_string goes out of scope and `drop` is called. The backing
// memory is freed.
fn makes_copy(some_integer: i32) { // some_integer comes into scope.
println!("{}", some_integer);
} // Here, some_integer goes out of scope. Nothing special happens.
```
<caption>
Listing 4-7: Functions with ownership and scope annotated
</caption>
If we tried to use `s` after the call to `takes_ownership`, Rust would throw a
compile time error. These static checks protect us from mistakes. Try adding
code to `main` that uses `s` and `x` to see where you can use them and where
the ownership rules prevent you from doing so.
### Return Values and Scope
Returning values can also transfer ownership. Heres an example with similar
annotations to those in Listing 4-7:
Filename: src/main.rs
```rust
fn main() {
let s1 = gives_ownership(); // gives_ownership moves its return
// value into s1.
let s2 = String::from("hello"); // s2 comes into scope.
let s3 = takes_and_gives_back(s2); // s2 is moved into
// takes_and_gives_back, which also
// moves its return value into s3.
} // Here, s3 goes out of scope and is dropped. s2 goes out of scope but was
// moved, so nothing happens. s1 goes out of scope and is dropped.
fn gives_ownership() -> String { // gives_ownership will move its
// return value into the function
// that calls it.
let some_string = String::from("hello"); // some_string comes into scope.
some_string // some_string is returned and
// moves out to the calling
// function.
}
// takes_and_gives_back will take a String and return one.
fn takes_and_gives_back(a_string: String) -> String { // a_string comes into
scope.
a_string // a_string is returned and moves out to the calling function.
}
```
The ownership of variables follows the same pattern every time: assigning a
value to another variable moves it, and when heap data values variables go out
of scope, if the data hasnt been moved to be owned by another variable, the
value will be cleaned up by `drop`.
Taking ownership and then returning ownership with every function is a bit
tedious. What if we want to let a function use a value but not take ownership?
Its quite annoying that anything we pass in also needs to be passed back if we
want to use it again, in addition to any data resulting from the body of the
function that we might want to return as well.
Its possible to return multiple values using a tuple, like this:
Filename: src/main.rs
```rust
fn main() {
let s1 = String::from("hello");
let (s2, len) = calculate_length(s1);
println!("The length of '{}' is {}.", s2, len);
}
fn calculate_length(s: String) -> (String, usize) {
let length = s.len(); // len() returns the length of a String.
(s, length)
}
```
But this is too much ceremony and a lot of work for a concept that should be
common. Luckily for us, Rust has a feature for this concept, and its called
*references*.
## References and Borrowing
The issue with the tuple code at the end of the preceding section is that we
have to return the `String` to the calling function so we can still use the
`String` after the call to `calculate_length`, because the `String` was moved
into `calculate_length`.
Here is how you would define and use a `calculate_length` function that takes a
*reference* to an object as an argument instead of taking ownership of the
argument:
Filename: src/main.rs
```rust
fn main() {
let s1 = String::from("hello");
let len = calculate_length(&s1);
println!("The length of '{}' is {}.", s1, len);
}
fn calculate_length(s: &String) -> usize {
s.len()
}
```
First, notice that all the tuple code in the variable declaration and the
function return value is gone. Second, note that we pass `&s1` into
`calculate_length`, and in its definition, we take `&String` rather than
`String`.
These ampersands are *references*, and they allow you to refer to some value
without taking ownership of it. Figure 4-8 shows a diagram.
<img alt="&String s pointing at String s1" src="img/trpl04-05.svg" class="center" />
<caption>
Figure 4-8: `&String s` pointing at `String s1`
</caption>
Lets take a closer look at the function call here:
```rust
let s1 = String::from("hello");
let len = calculate_length(&s1);
```
The `&s1` syntax lets us create a reference that *refers* to the value of `s1`
but does not own it. Because it does not own it, the value it points to will
not be dropped when the reference goes out of scope.
Likewise, the signature of the function uses `&` to indicate that it takes a
reference as an argument. Lets add some explanatory annotations:
```rust
fn calculate_length(s: &String) -> usize { // s is a reference to a String
s.len()
} // Here, s goes out of scope. But because it does not have ownership of what
// it refers to, nothing happens.
```
The scope in which the variable `s` is valid is the same as any function
argument's scope, but we dont drop what the reference points to when it goes
out of scope because we dont have ownership. Functions that take references as
arguments instead of the actual values mean we wont need to return the values
in order to give back ownership, since we never had ownership.
We call taking references as function arguments *borrowing*. As in real life,
if a person owns something, you can borrow it from them. When youre done, you
have to give it back.
So what happens if we try to modify something were borrowing? Try the code in
Listing 4-9. Spoiler alert: it doesnt work!
Filename: src/main.rs
```rust,ignore
fn main() {
let s = String::from("hello");
change(&s);
}
fn change(some_string: &String) {
some_string.push_str(", world");
}
```
<caption>
Listing 4-9: Attempting to modify a borrowed value
</caption>
Heres the error:
```text
error: cannot borrow immutable borrowed content `*some_string` as mutable
--> error.rs:8:5
|
8 | some_string.push_str(", world");
| ^^^^^^^^^^^
```
Just as variables are immutable by default, so are references. Were not
allowed to modify something we have a reference to.
### Mutable References
We can fix the error in the code from Listing 4-9 with just a small tweak:
Filename: src/main.rs
```rust
fn main() {
let mut s = String::from("hello");
change(&mut s);
}
fn change(some_string: &mut String) {
some_string.push_str(", world");
}
```
First, we had to change `s` to be `mut`. Then we had to create a mutable
reference with `&mut s` and accept a mutable reference with `some_string: &mut
String`.
But mutable references have one big restriction: you can only have one mutable
reference to a particular piece of data in a particular scope. This code will
fail:
Filename: src/main.rs
```rust,ignore
let mut s = String::from("hello");
let r1 = &mut s;
let r2 = &mut s;
```
Heres the error:
```text
error[E0499]: cannot borrow `s` as mutable more than once at a time
--> borrow_twice.rs:5:19
|
4 | let r1 = &mut s;
| - first mutable borrow occurs here
5 | let r2 = &mut s;
| ^ second mutable borrow occurs here
6 | }
| - first borrow ends here
```
This restriction allows for mutation but in a very controlled fashion. Its
something that new Rustaceans struggle with, because most languages let you
mutate whenever youd like. The benefit of having this restriction is that Rust
can prevent data races at compile time.
A *data race* is a particular type of race condition in which these three
behaviors occur:
1. Two or more pointers access the same data at the same time.
1. At least one of the pointers is being used to write to the data.
1. Theres no mechanism being used to synchronize access to the data.
Data races cause undefined behavior and can be difficult to diagnose and fix
when youre trying to track them down at runtime; Rust prevents this problem
from happening because it wont even compile code with data races!
As always, we can use curly brackets to create a new scope, allowing for
multiple mutable references, just not *simultaneous* ones:
```rust
let mut s = String::from("hello");
{
let r1 = &mut s;
} // r1 goes out of scope here, so we can make a new reference with no problems.
let r2 = &mut s;
```
A similar rule exists for combining mutable and immutable references. This code
results in an error:
```rust,ignore
let mut s = String::from("hello");
let r1 = &s; // no problem
let r2 = &s; // no problem
let r3 = &mut s; // BIG PROBLEM
```
Heres the error:
```text
error[E0502]: cannot borrow `s` as mutable because it is also borrowed as
immutable
--> borrow_thrice.rs:6:19
|
4 | let r1 = &s; // no problem
| - immutable borrow occurs here
5 | let r2 = &s; // no problem
6 | let r3 = &mut s; // BIG PROBLEM
| ^ mutable borrow occurs here
7 | }
| - immutable borrow ends here
```
Whew! We *also* cannot have a mutable reference while we have an immutable one.
Users of an immutable reference dont expect the values to suddenly change out
from under them! However, multiple immutable references are okay because no one
who is just reading the data has the ability to affect anyone elses reading of
the data.
Even though these errors may be frustrating at times, remember that its the
Rust compiler pointing out a potential bug early (at compile time rather than
at runtime) and showing you exactly where the problem is instead of you having
to track down why sometimes your data isnt what you thought it should be.
### Dangling References
In languages with pointers, its easy to erroneously create a *dangling
pointer*, a pointer that references a location in memory that may have been
given to someone else, by freeing some memory while preserving a pointer to
that memory. In Rust, by contrast, the compiler guarantees that references will
never be dangling references: if we have a reference to some data, the compiler
will ensure that the data will not go out of scope before the reference to the
data does.
Lets try to create a dangling reference:
Filename: src/main.rs
```rust,ignore
fn main() {
let reference_to_nothing = dangle();
}
fn dangle() -> &String {
let s = String::from("hello");
&s
}
```
Heres the error:
```text
error[E0106]: missing lifetime specifier
--> dangle.rs:5:16
|
5 | fn dangle() -> &String {
| ^^^^^^^
|
= help: this function's return type contains a borrowed value, but there is no
value for it to be borrowed from
= help: consider giving it a 'static lifetime
error: aborting due to previous error
```
This error message refers to a feature we havent covered yet: *lifetimes*.
Well discuss lifetimes in detail in Chapter 10. But, if you disregard the
parts about lifetimes, the message does contain the key to why this code is a
problem:
```
this function's return type contains a borrowed value, but there is no value
for it to be borrowed from.
```
Lets take a closer look at exactly whats happening at each stage of our
`dangle` code:
```rust,ignore
fn dangle() -> &String { // dangle returns a reference to a String
let s = String::from("hello"); // s is a new String
&s // we return a reference to the String, s
} // Here, s goes out of scope, and is dropped. Its memory goes away.
// Danger!
```
Because `s` is created inside `dangle`, when the code of `dangle` is finished,
`s` will be deallocated. But we tried to return a reference to it. That means
this reference would be pointing to an invalid `String`! Thats no good. Rust
wont let us do this.
The correct code here is to return the `String` directly:
```rust
fn no_dangle() -> String {
let s = String::from("hello");
s
}
```
This works without any problems. Ownership is moved out, and nothing is
deallocated.
### The Rules of References
Lets recap what weve discussed about references:
1. At any given time, you can have *either* but not both of:
* One mutable reference.
* Any number of immutable references.
2. References must always be valid.
Next, well look at a different kind of reference: slices.
## Slices
Another data type that does not have ownership is the *slice*. Slices let you
reference a contiguous sequence of elements in a collection rather than the
whole collection.
Heres a small programming problem: write a function that takes a string and
returns the first word it finds in that string. If the function doesnt find a
space in the string, it means the whole string is one word, so the entire
string should be returned.
Lets think about the signature of this function:
```rust,ignore
fn first_word(s: &String) -> ?
```
This function, `first_word`, takes a `&String` as an argument. We dont want
ownership, so this is fine. But what should we return? We dont really have a
way to talk about *part* of a string. However, we could return the index of the
end of the word. Lets try that as shown in Listing 4-10:
Filename: src/main.rs
```rust
fn first_word(s: &String) -> usize {
let bytes = s.as_bytes();
for (i, &item) in bytes.iter().enumerate() {
if item == b' ' {
return i;
}
}
s.len()
}
```
<caption>
Listing 4-10: The `first_word` function that returns a byte index value into
the `String` argument
</caption>
Lets break down this code a bit:
```rust,ignore
let bytes = s.as_bytes();
```
Because we need to go through the `String` element by element and check whether
a value is a space, well convert our `String` to an array of bytes using the
`as_bytes` method:
```rust,ignore
for (i, &item) in bytes.iter().enumerate() {
```
Well discuss iterators in more detail in Chapter 16. For now, know that `iter`
is a method that returns each element in a collection, and `enumerate` wraps
the result of `iter` and returns each element as part of a tuple instead. The
first element of the returned tuple is the index, and the second element is a
reference to the element. This is a bit more convenient than calculating the
index ourselves.
Because the method returns a tuple, we can use patterns, just like everywhere
else in Rust. So we match against the tuple with `i` for the index and `&item`
for a single byte. Because we get a reference from `.iter().enumerate()`, we
use `&` in the pattern:
```rust,ignore
if item == b' ' {
return i;
}
}
s.len()
```
We search for the byte that represents the space by using the byte literal
syntax. If we find a space, we return the position. Otherwise, we return the
length of the string by using `s.len()`.
We now have a way to find out the index of the end of the first word in the
string, but theres a problem. Were returning a `usize` on its own, but its
only a meaningful number in the context of the `&String`. In other words,
because its a separate value from the `String`, theres no guarantee that it
will still be valid in the future. Consider the program in Listing 4-11 that
uses the `first_word` function from Listing 4-10:
Filename: src/main.rs
```rust
fn main() {
let mut s = String::from("hello world");
let word = first_word(&s); // word will get the value 5.
s.clear(); // This empties the String, making it equal to "".
// word still has the value 5 here, but there's no more string that
// we could meaningfully use the value 5 with. word is now totally invalid!
}
```
<caption>
Listing 4-11: Storing the result from calling the `first_word` function then
changing the `String` contents
</caption>
This program compiles without any errors and also would if we used `word` after
calling `s.clear()`. `word` isnt connected to the state of `s` at all, so
`word` still contains the value `5`. We could use that value `5` with the
variable `s` to try to extract the first word out, but this would be a bug
because the contents of `s` have changed since we saved `5` in `word`.
Having to worry about the index in `word` getting out of sync with the data in
`s` is tedious and error prone! Managing these indices is even more brittle if
we write a `second_word` function. Its signature would have to look like this:
```rust,ignore
fn second_word(s: &String) -> (usize, usize) {
```
Now were tracking a start *and* an ending index, and we have even more values
that were calculated from data in a particular state but arent tied to that
state at all. We now have three unrelated variables floating around that need
to be kept in sync.
Luckily, Rust has a solution to this problem: string slices.
### String Slices
A *string slice* is a reference to part of a `String`, and looks like this:
```rust
let s = String::from("hello world");
let hello = &s[0..5];
let world = &s[6..11];
```
This is similar to taking a reference to the whole `String` but with the extra
`[0..5]` bit. Rather than a reference to the entire `String`, its a reference
to an internal position in the `String` and the number of elements that it
refers to.
We create slices with a range of `[starting_index..ending_index]`, but the
slice data structure actually stores the starting position and the length of
the slice. So in the case of `let world = &s[6..11];`, `world` would be a slice
that contains a pointer to the 6th byte of `s` and a length value of 5.
Figure 4-12 shows this in a diagram.
<img alt="world containing a pointer to the 6th byte of String s and a length 5" src="img/trpl04-06.svg" class="center" style="width: 50%;" />
<caption>
Figure 4-12: String slice referring to part of a `String`
</caption>
With Rusts `..` range syntax, if you want to start at the first index (zero),
you can drop the value before the two periods. In other words, these are equal:
```rust
let s = String::from("hello");
let slice = &s[0..2];
let slice = &s[..2];
```
By the same token, if your slice includes the last byte of the `String`, you
can drop the trailing number. That means these are equal:
```rust
let s = String::from("hello");
let len = s.len();
let slice = &s[3..len];
let slice = &s[3..];
```
You can also drop both values to take a slice of the entire string. So these
are equal:
```rust
let s = String::from("hello");
let len = s.len();
let slice = &s[0..len];
let slice = &s[..];
```
With all this information in mind, lets rewrite `first_word` to return a
slice. The type that signifies “string slice” is written as `&str`:
Filename: src/main.rs
```rust
fn first_word(s: &String) -> &str {
let bytes = s.as_bytes();
for (i, &item) in bytes.iter().enumerate() {
if item == b' ' {
return &s[0..i];
}
}
&s[..]
}
```
We get the index for the end of the word in the same way as we did in Listing
4-10, by looking for the first occurrence of a space. When we find a space, we
return a string slice using the start of the string and the index of the space
as the starting and ending indices.
Now when we call `first_word`, we get back a single value that is tied to the
underlying data. The value is made up of a reference to the starting point of
the slice and the number of elements in the slice.
Returning a slice would also work for a `second_word` function:
```rust,ignore
fn second_word(s: &String) -> &str {
```
We now have a straightforward API thats much harder to mess up, since the
compiler will ensure the references into the `String` remain valid. Remember
the bug in the program in Listing 4-11, when we got the index to the end of the
first word but then cleared the string so our index was invalid? That code was
logically incorrect but didnt show any immediate errors. The problems would
show up later if we kept trying to use the first word index with an emptied
string. Slices make this bug impossible and let us know we have a problem with
our code much sooner. Using the slice version of `first_word` will throw a
compile time error:
Filename: src/main.rs
```rust,ignore
fn main() {
let mut s = String::from("hello world");
let word = first_word(&s);
s.clear(); // Error!
}
```
Heres the compiler error:
```text
17:6 error: cannot borrow `s` as mutable because it is also borrowed as
immutable [E0502]
s.clear(); // Error!
^
15:29 note: previous borrow of `s` occurs here; the immutable borrow prevents
subsequent moves or mutable borrows of `s` until the borrow ends
let word = first_word(&s);
^
18:2 note: previous borrow ends here
fn main() {
}
^
```
Recall from the borrowing rules that if we have an immutable reference to
something, we cannot also take a mutable reference. Because `clear` needs to
truncate the `String`, it tries to take a mutable reference, which fails. Not
only has Rust made our API easier to use, but it has also eliminated an entire
class of errors at compile time!
#### String Literals Are Slices
Recall that we talked about string literals being stored inside the binary. Now
that we know about slices, we can properly understand string literals:
```rust
let s = "Hello, world!";
```
The type of `s` here is `&str`: its a slice pointing to that specific point of
the binary. This is also why string literals are immutable; `&str` is an
immutable reference.
#### String Slices as Arguments
Knowing that you can take slices of literals and `String`s leads us to one more
improvement on `first_word`, and thats its signature:
```rust,ignore
fn first_word(s: &String) -> &str {
```
A more experienced Rustacean would write the following line instead because it
allows us to use the same function on both `String`s and `&str`s:
```rust,ignore
fn first_word(s: &str) -> &str {
```
If we have a string slice, we can pass that as the argument directly. If we
have a `String`, we can pass a slice of the entire `String`. Defining a
function to take a string slice argument instead of a reference to a String
makes our API more general and useful without losing any functionality:
Filename: src/main.rs
```rust
fn main() {
let my_string = String::from("hello world");
// first_word works on slices of `String`s
let word = first_word(&my_string[..]);
let my_string_literal = "hello world";
// first_word works on slices of string literals
let word = first_word(&my_string_literal[..]);
// since string literals *are* string slices already,
// this works too, without the slice syntax!
let word = first_word(my_string_literal);
}
```
### Other Slices
String slices, as you might imagine, are specific to strings. But theres a
more general slice type, too. Consider this array:
```rust
let a = [1, 2, 3, 4, 5];
```
Just like we might want to refer to a part of a string, we might want to refer
to part of an array and would do so like this:
```rust
let a = [1, 2, 3, 4, 5];
let slice = &a[1..3];
```
This slice has the type `&[i32]`. It works the same way as string slices do, by
storing a reference to the first element and a length. Youll use this kind of
slice for all sorts of other collections. Well discuss these collections in
detail when we talk about vectors in Chapter 8.
## Summary
The concepts of ownership, borrowing, and slices are what ensure memory safety
in Rust programs at compile time. The Rust language gives you control over your
memory usage like other systems programming languages, but having the owner of
data automatically clean up that data when the owner goes out of scope means
you dont have to write and debug extra code to get this control.
Ownership affects how lots of other parts of Rust work, so well talk about
these concepts further throughout the rest of the book. Lets move on to the
next chapter and look at grouping pieces of data together in a `struct`.