mirror of
https://github.com/krahets/hello-algo.git
synced 2025-01-23 14:20:29 +08:00
142 lines
4.4 KiB
Markdown
142 lines
4.4 KiB
Markdown
# 建堆操作
|
|
|
|
在某些情况下,我们希望使用一个列表的所有元素来构建一个堆,这个过程被称为“建堆操作”。
|
|
|
|
## 自上而下构建
|
|
|
|
我们首先创建一个空堆,然后遍历列表,依次对每个元素执行“入堆操作”,即先将元素添加至堆的尾部,再对该元素执行“从底至顶”堆化。
|
|
|
|
每当一个元素入堆,堆的长度就加一,因此堆是“自上而下”地构建的。
|
|
|
|
设元素数量为 $n$ ,每个元素的入堆操作使用 $O(\log{n})$ 时间,因此该建堆方法的时间复杂度为 $O(n \log n)$ 。
|
|
|
|
## 自下而上构建
|
|
|
|
实际上,我们可以实现一种更为高效的建堆方法,共分为两步。
|
|
|
|
1. 将列表所有元素原封不动添加到堆中。
|
|
2. 倒序遍历堆(即层序遍历的倒序),依次对每个非叶节点执行“从顶至底堆化”。
|
|
|
|
在倒序遍历中,堆是“自下而上”地构建的,需要重点理解以下两点。
|
|
|
|
- 由于叶节点没有子节点,因此无需对它们执行堆化。最后一个节点的父节点是最后一个非叶节点。
|
|
- 在倒序遍历中,我们能够保证当前节点之下的子树已经完成堆化(已经是合法的堆),而这是堆化当前节点的前置条件。
|
|
|
|
=== "Java"
|
|
|
|
```java title="my_heap.java"
|
|
[class]{MaxHeap}-[func]{MaxHeap}
|
|
```
|
|
|
|
=== "C++"
|
|
|
|
```cpp title="my_heap.cpp"
|
|
[class]{MaxHeap}-[func]{MaxHeap}
|
|
```
|
|
|
|
=== "Python"
|
|
|
|
```python title="my_heap.py"
|
|
[class]{MaxHeap}-[func]{__init__}
|
|
```
|
|
|
|
=== "Go"
|
|
|
|
```go title="my_heap.go"
|
|
[class]{maxHeap}-[func]{newMaxHeap}
|
|
```
|
|
|
|
=== "JS"
|
|
|
|
```javascript title="my_heap.js"
|
|
[class]{MaxHeap}-[func]{constructor}
|
|
```
|
|
|
|
=== "TS"
|
|
|
|
```typescript title="my_heap.ts"
|
|
[class]{MaxHeap}-[func]{constructor}
|
|
```
|
|
|
|
=== "C"
|
|
|
|
```c title="my_heap.c"
|
|
[class]{maxHeap}-[func]{newMaxHeap}
|
|
```
|
|
|
|
=== "C#"
|
|
|
|
```csharp title="my_heap.cs"
|
|
[class]{MaxHeap}-[func]{MaxHeap}
|
|
```
|
|
|
|
=== "Swift"
|
|
|
|
```swift title="my_heap.swift"
|
|
[class]{MaxHeap}-[func]{init}
|
|
```
|
|
|
|
=== "Zig"
|
|
|
|
```zig title="my_heap.zig"
|
|
[class]{MaxHeap}-[func]{init}
|
|
```
|
|
|
|
=== "Dart"
|
|
|
|
```dart title="my_heap.dart"
|
|
[class]{MaxHeap}-[func]{MaxHeap}
|
|
```
|
|
|
|
=== "Rust"
|
|
|
|
```rust title="my_heap.rs"
|
|
[class]{MaxHeap}-[func]{new}
|
|
```
|
|
|
|
## 复杂度分析
|
|
|
|
下面,我们来尝试推算第二种建堆方法的时间复杂度。
|
|
|
|
- 假设完全二叉树的节点数量为 $n$ ,则叶节点数量为 $(n + 1) / 2$ ,其中 $/$ 为向下整除。因此需要堆化的节点数量为 $(n - 1) / 2$ 。
|
|
- 在从顶至底堆化的过程中,每个节点最多堆化到叶节点,因此最大迭代次数为二叉树高度 $\log n$ 。
|
|
|
|
将上述两者相乘,可得到建堆过程的时间复杂度为 $O(n \log n)$ 。**但这个估算结果并不准确,因为我们没有考虑到二叉树底层节点数量远多于顶层节点的性质**。
|
|
|
|
接下来我们来进行更为准确的计算。为了减小计算难度,假设给定一个节点数量为 $n$ ,高度为 $h$ 的“完美二叉树”,该假设不会影响计算结果的正确性。
|
|
|
|
![完美二叉树的各层节点数量](build_heap.assets/heapify_operations_count.png)
|
|
|
|
如上图所示,节点“从顶至底堆化”的最大迭代次数等于该节点到叶节点的距离,而该距离正是“节点高度”。因此,我们可以将各层的“节点数量 $\times$ 节点高度”求和,**从而得到所有节点的堆化迭代次数的总和**。
|
|
|
|
$$
|
|
T(h) = 2^0h + 2^1(h-1) + 2^2(h-2) + \dots + 2^{(h-1)}\times1
|
|
$$
|
|
|
|
化简上式需要借助中学的数列知识,先对 $T(h)$ 乘以 $2$ ,得到:
|
|
|
|
$$
|
|
\begin{aligned}
|
|
T(h) & = 2^0h + 2^1(h-1) + 2^2(h-2) + \dots + 2^{h-1}\times1 \newline
|
|
2 T(h) & = 2^1h + 2^2(h-1) + 2^3(h-2) + \dots + 2^{h}\times1 \newline
|
|
\end{aligned}
|
|
$$
|
|
|
|
使用错位相减法,用下式 $2 T(h)$ 减去上式 $T(h)$ ,可得:
|
|
|
|
$$
|
|
2T(h) - T(h) = T(h) = -2^0h + 2^1 + 2^2 + \dots + 2^{h-1} + 2^h
|
|
$$
|
|
|
|
观察上式,发现 $T(h)$ 是一个等比数列,可直接使用求和公式,得到时间复杂度为:
|
|
|
|
$$
|
|
\begin{aligned}
|
|
T(h) & = 2 \frac{1 - 2^h}{1 - 2} - h \newline
|
|
& = 2^{h+1} - h - 2 \newline
|
|
& = O(2^h)
|
|
\end{aligned}
|
|
$$
|
|
|
|
进一步地,高度为 $h$ 的完美二叉树的节点数量为 $n = 2^{h+1} - 1$ ,易得复杂度为 $O(2^h) = O(n)$ 。以上推算表明,**输入列表并建堆的时间复杂度为 $O(n)$ ,非常高效**。
|