hello-algo/docs/chapter_tree/avl_tree.md
2022-12-14 01:30:04 +08:00

651 lines
16 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
comments: true
---
# AVL 树 *
在「二叉搜索树」章节中提到,在进行多次插入与删除操作后,二叉搜索树可能会退化为链表。此时所有操作的时间复杂度都会由 $O(\log n)$ 劣化至 $O(n)$ 。
如下图所示,执行两步删除结点后,该二叉搜索树就会退化为链表。
![degradation_from_removing_node](avl_tree.assets/degradation_from_removing_node.png)
再比如,在以下完美二叉树中插入两个结点后,树严重向左偏斜,查找操作的时间复杂度也随之发生劣化。
![degradation_from_inserting_node](avl_tree.assets/degradation_from_inserting_node.png)
G. M. Adelson-Velsky 和 E. M. Landis 在其 1962 年发表的论文 "An algorithm for the organization of information" 中提出了「AVL 树」。**论文中描述了一系列操作使得在不断添加与删除结点后AVL 树仍然不会发生退化**,进而使得各种操作的时间复杂度均能保持在 $O(\log n)$ 级别。
换言之在频繁增删查改的使用场景中AVL 树可始终保持很高的数据增删查改效率,具有很好的应用价值。
## AVL 树常见术语
「AVL 树」既是「二叉搜索树」又是「平衡二叉树」,同时满足这两种二叉树的所有性质,因此又被称为「平衡二叉搜索树」。
### 结点高度
在 AVL 树的操作中,需要获取结点「高度 Height」所以给 AVL 树的结点类添加 `height` 变量。
=== "Java"
```java title="avl_tree.java"
/* AVL 树结点类 */
class TreeNode {
public int val; // 结点值
public int height; // 结点高度
public TreeNode left; // 左子结点
public TreeNode right; // 右子结点
public TreeNode(int x) { val = x; }
}
```
=== "C++"
```cpp title="avl_tree.cpp"
```
=== "Python"
```python title="avl_tree.py"
```
=== "Go"
```go title="avl_tree.go"
```
=== "JavaScript"
```js title="avl_tree.js"
```
=== "TypeScript"
```typescript title="avl_tree.ts"
```
=== "C"
```c title="avl_tree.c"
```
=== "C#"
```csharp title="avl_tree.cs"
```
「结点高度」是最远叶结点到该结点的距离,即走过的「边」的数量。需要特别注意,**叶结点的高度为 0 ,空结点的高度为 -1** 。我们封装两个工具函数,分别用于获取与更新结点的高度。
=== "Java"
```java title="avl_tree.java"
/* 获取结点高度 */
int height(TreeNode node) {
// 空结点高度为 -1 ,叶结点高度为 0
return node == null ? -1 : node.height;
}
/* 更新结点高度 */
void updateHeight(TreeNode node) {
// 结点高度等于最高子树高度 + 1
node.height = Math.max(height(node.left), height(node.right)) + 1;
}
```
=== "C++"
```cpp title="avl_tree.cpp"
```
=== "Python"
```python title="avl_tree.py"
```
=== "Go"
```go title="avl_tree.go"
```
=== "JavaScript"
```js title="avl_tree.js"
```
=== "TypeScript"
```typescript title="avl_tree.ts"
```
=== "C"
```c title="avl_tree.c"
```
=== "C#"
```csharp title="avl_tree.cs"
```
### 结点平衡因子
结点的「平衡因子 Balance Factor」是 **结点的左子树高度减去右子树高度**,并定义空结点的平衡因子为 0 。同样地,我们将获取结点平衡因子封装成函数,以便后续使用。
=== "Java"
```java title="avl_tree.java"
/* 获取结点平衡因子 */
public int balanceFactor(TreeNode node) {
// 空结点平衡因子为 0
if (node == null) return 0;
// 结点平衡因子 = 左子树高度 - 右子树高度
return height(node.left) - height(node.right);
}
```
=== "C++"
```cpp title="avl_tree.cpp"
```
=== "Python"
```python title="avl_tree.py"
```
=== "Go"
```go title="avl_tree.go"
```
=== "JavaScript"
```js title="avl_tree.js"
```
=== "TypeScript"
```typescript title="avl_tree.ts"
```
=== "C"
```c title="avl_tree.c"
```
=== "C#"
```csharp title="avl_tree.cs"
```
!!! note
设平衡因子为 $f$ ,则一棵 AVL 树的任意结点的平衡因子皆满足 $-1 \le f \le 1$ 。
## AVL 树旋转
AVL 树的独特之处在于「旋转 Rotation」的操作其可 **在不影响二叉树中序遍历序列的前提下,使失衡结点重新恢复平衡。** 换言之,旋转操作既可以使树保持为「二叉搜索树」,也可以使树重新恢复为「平衡二叉树」。
我们将平衡因子的绝对值 $> 1$ 的结点称为「失衡结点」。根据结点的失衡情况,旋转操作分为 **右旋、左旋、先右旋后左旋、先左旋后右旋**,接下来我们来一起来看看它们是如何操作的。
### Case 1 - 右旋
如下图所示(结点下方为「平衡因子」),从底至顶看,二叉树中首个失衡结点是 **结点 3** 。我们聚焦在以该失衡结点为根结点的子树上,将该结点记为 `node` ,将其左子节点记为 `child` ,执行「右旋」操作。完成右旋后,该子树已经恢复平衡,并且仍然为二叉搜索树。
=== "Step 1"
![right_rotate_step1](avl_tree.assets/right_rotate_step1.png)
=== "Step 2"
![right_rotate_step2](avl_tree.assets/right_rotate_step2.png)
=== "Step 3"
![right_rotate_step3](avl_tree.assets/right_rotate_step3.png)
=== "Step 4"
![right_rotate_step4](avl_tree.assets/right_rotate_step4.png)
进而,如果结点 `child` 本身有右子结点(记为 `grandChild`),则需要在「右旋」中添加一步:将 `grandChild` 作为 `node` 的左子结点。
![right_rotate_with_grandchild](avl_tree.assets/right_rotate_with_grandchild.png)
“向右旋转” 是一种形象化的说法,实际需要通过修改结点指针实现,代码如下所示。
=== "Java"
```java title="avl_tree.java"
/* 右旋操作 */
TreeNode rightRotate(TreeNode node) {
TreeNode child = node.left;
TreeNode grandChild = child.right;
// 以 child 为原点,将 node 向右旋转
child.right = node;
node.left = grandChild;
// 更新结点高度
updateHeight(node);
updateHeight(child);
// 返回旋转后子树的根节点
return child;
}
```
=== "C++"
```cpp title="avl_tree.cpp"
```
=== "Python"
```python title="avl_tree.py"
```
=== "Go"
```go title="avl_tree.go"
```
=== "JavaScript"
```js title="avl_tree.js"
```
=== "TypeScript"
```typescript title="avl_tree.ts"
```
=== "C"
```c title="avl_tree.c"
```
=== "C#"
```csharp title="avl_tree.cs"
```
### Case 2 - 左旋
类似地,如果将取上述失衡二叉树的 “镜像” ,那么则需要「左旋」操作。观察发现,**「左旋」和「右旋」操作是镜像对称的,两者对应解决的两种失衡情况也是对称的**。
![left_rotate_with_grandchild](avl_tree.assets/left_rotate_with_grandchild.png)
根据对称性,我们可以很方便地从「右旋」推导出「左旋」。具体地,把所有的 `left` 替换为 `right` 、所有的 `right` 替换为 `left` 即可。
=== "Java"
```java title="avl_tree.java"
/* 左旋操作 */
private TreeNode leftRotate(TreeNode node) {
TreeNode child = node.right;
TreeNode grandChild = child.left;
// 以 child 为原点,将 node 向左旋转
child.left = node;
node.right = grandChild;
// 更新结点高度
updateHeight(node);
updateHeight(child);
// 返回旋转后子树的根节点
return child;
}
```
=== "C++"
```cpp title="avl_tree.cpp"
```
=== "Python"
```python title="avl_tree.py"
```
=== "Go"
```go title="avl_tree.go"
```
=== "JavaScript"
```js title="avl_tree.js"
```
=== "TypeScript"
```typescript title="avl_tree.ts"
```
=== "C"
```c title="avl_tree.c"
```
=== "C#"
```csharp title="avl_tree.cs"
```
### Case 3 - 先左后右
对于下图的失衡结点 3 **单一使用左旋或右旋都无法使子树恢复平衡**,此时需要「先左旋后右旋」,即先对 `child` 执行「左旋」,再对 `node` 执行「右旋」。
![left_right_rotate](avl_tree.assets/left_right_rotate.png)
### Case 4 - 先右后左
同理,取以上失衡二叉树的镜像,则需要「先右旋后左旋」,即先对 `child` 执行「右旋」,然后对 `node` 执行「左旋」。
![right_left_rotate](avl_tree.assets/right_left_rotate.png)
### 旋转的选择
下图描述的四种失衡情况与上述 Cases 一一对应,分别采用右旋、左旋、先右后左、先左后右的旋转组合。
![rotation_cases](avl_tree.assets/rotation_cases.png)
具体地,需要使用 **失衡结点的平衡因子、较高一侧子结点的平衡因子** 来确定失衡结点属于上图中的哪种情况。
<div class="center-table" markdown>
| 失衡结点的平衡因子 | 子结点的平衡因子 | 应采用的旋转方法 |
| ------------------ | ---------------- | ---------------- |
| $>0$ (即左偏树) | $\geq 0$ | 右旋 |
| $>0$ (即左偏树) | $<0$ | 先左旋后右旋 |
| $<0$ 即右偏树 | $\leq 0$ | 左旋 |
| $<0$ 即右偏树 | $>0$ | 先右旋后左旋 |
</div>
根据以上规则,我们将旋转操作封装成一个函数。至此,**我们可以使用此函数来旋转各种失衡情况,使失衡结点重新恢复平衡**。
=== "Java"
```java title="avl_tree.java"
/* 执行旋转操作,使该子树重新恢复平衡 */
TreeNode rotate(TreeNode node) {
// 获取结点 node 的平衡因子
int balanceFactor = balanceFactor(node);
// 左偏树
if (balanceFactor > 1) {
if (balanceFactor(node.left) >= 0) {
// 右旋
return rightRotate(node);
} else {
// 先左旋后右旋
node.left = leftRotate(node.left);
return rightRotate(node);
}
}
// 右偏树
if (balanceFactor < -1) {
if (balanceFactor(node.right) <= 0) {
// 左旋
return leftRotate(node);
} else {
// 先右旋后左旋
node.right = rightRotate(node.right);
return leftRotate(node);
}
}
// 平衡树无需旋转直接返回
return node;
}
```
=== "C++"
```cpp title="avl_tree.cpp"
```
=== "Python"
```python title="avl_tree.py"
```
=== "Go"
```go title="avl_tree.go"
```
=== "JavaScript"
```js title="avl_tree.js"
```
=== "TypeScript"
```typescript title="avl_tree.ts"
```
=== "C"
```c title="avl_tree.c"
```
=== "C#"
```csharp title="avl_tree.cs"
```
## AVL 树常用操作
### 插入结点
AVL 的结点插入操作与二叉搜索树主体类似不同的是在插入结点后从该结点到根结点的路径上会出现一系列失衡结点」。所以**我们需要从该结点开始从底至顶地执行旋转操作使所有失衡结点恢复平衡**。
=== "Java"
```java title="avl_tree.java"
/* 插入结点 */
TreeNode insert(int val) {
root = insertHelper(root, val);
return root;
}
/* 递归插入结点辅助函数 */
TreeNode insertHelper(TreeNode node, int val) {
if (node == null) return new TreeNode(val);
/* 1. 查找插入位置并插入结点 */
if (val < node.val)
node.left = insertHelper(node.left, val);
else if (val > node.val)
node.right = insertHelper(node.right, val);
else
return node; // 重复结点不插入,直接返回
updateHeight(node); // 更新结点高度
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
node = rotate(node);
// 返回子树的根节点
return node;
}
```
=== "C++"
```cpp title="avl_tree.cpp"
```
=== "Python"
```python title="avl_tree.py"
```
=== "Go"
```go title="avl_tree.go"
```
=== "JavaScript"
```js title="avl_tree.js"
```
=== "TypeScript"
```typescript title="avl_tree.ts"
```
=== "C"
```c title="avl_tree.c"
```
=== "C#"
```csharp title="avl_tree.cs"
```
### 删除结点
「AVL 树」删除结点操作与「二叉搜索树」删除结点操作总体相同。类似地,**在删除结点后,也需要从底至顶地执行旋转操作,使所有失衡结点恢复平衡**。
=== "Java"
```java title="avl_tree.java"
/* 删除结点 */
TreeNode remove(int val) {
root = removeHelper(root, val);
return root;
}
/* 递归删除结点(辅助函数) */
TreeNode removeHelper(TreeNode node, int val) {
if (node == null) return null;
/* 1. 查找结点,并删除之 */
if (val < node.val)
node.left = removeHelper(node.left, val);
else if (val > node.val)
node.right = removeHelper(node.right, val);
else {
if (node.left == null || node.right == null) {
TreeNode child = node.left != null ? node.left : node.right;
// 子结点数量 = 0 ,直接删除 node 并返回
if (child == null)
return null;
// 子结点数量 = 1 ,直接删除 node
else
node = child;
} else {
// 子结点数量 = 2 ,则将中序遍历的下个结点删除,并用该结点替换当前结点
TreeNode temp = minNode(node.right);
node.right = removeHelper(node.right, temp.val);
node.val = temp.val;
}
}
updateHeight(node); // 更新结点高度
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
node = rotate(node);
// 返回子树的根节点
return node;
}
/* 获取最小结点 */
TreeNode minNode(TreeNode node) {
if (node == null) return node;
// 循环访问左子结点,直到叶结点时为最小结点,跳出
while (node.left != null) {
node = node.left;
}
return node;
}
```
=== "C++"
```cpp title="avl_tree.cpp"
```
=== "Python"
```python title="avl_tree.py"
```
=== "Go"
```go title="avl_tree.go"
```
=== "JavaScript"
```js title="avl_tree.js"
```
=== "TypeScript"
```typescript title="avl_tree.ts"
```
=== "C"
```c title="avl_tree.c"
```
=== "C#"
```csharp title="avl_tree.cs"
```
### 查找结点
「AVL 树」的结点查找操作与「二叉搜索树」一致,在此不再赘述。
## AVL 树典型应用
- 组织存储大型数据,适用于高频查找、低频增删场景;
- 用于建立数据库中的索引系统;
!!! question "为什么红黑树比 AVL 树更受欢迎?"
红黑树的平衡条件相对宽松,因此在红黑树中插入与删除结点所需的旋转操作相对更少,结点增删操作相比 AVL 树的效率更高。