hello-algo/docs/chapter_dynamic_programming/summary.md
Yudong Jin f616dac7da
Bug fixes and improvements (#1298)
* Fix is_empty() implementation in the stack and queue chapter

* Update en/CONTRIBUTING.md

* Remove "剩余" from the state definition of knapsack problem

* Sync zh and zh-hant versions

* Update the stylesheets of code tabs

* Fix quick_sort.rb

* Fix TS code

* Update chapter_paperbook

* Upload the manuscript of 0.1 section

* Fix binary_tree_dfs.rb

* Bug fixes

* Update README

* Update README

* Update README

* Update README.md

* Update README

* Sync zh and zh-hant versions

* Bug fixes
2024-04-22 02:26:32 +08:00

24 lines
3.3 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# 小结
- 动态规划对问题进行分解,并通过存储子问题的解来规避重复计算,提高计算效率。
- 不考虑时间的前提下,所有动态规划问题都可以用回溯(暴力搜索)进行求解,但递归树中存在大量的重叠子问题,效率极低。通过引入记忆化列表,可以存储所有计算过的子问题的解,从而保证重叠子问题只被计算一次。
- 记忆化搜索是一种从顶至底的递归式解法,而与之对应的动态规划是一种从底至顶的递推式解法,其如同“填写表格”一样。由于当前状态仅依赖某些局部状态,因此我们可以消除 $dp$ 表的一个维度,从而降低空间复杂度。
- 子问题分解是一种通用的算法思路,在分治、动态规划、回溯中具有不同的性质。
- 动态规划问题有三大特性:重叠子问题、最优子结构、无后效性。
- 如果原问题的最优解可以从子问题的最优解构建得来,则它就具有最优子结构。
- 无后效性指对于一个状态,其未来发展只与该状态有关,而与过去经历的所有状态无关。许多组合优化问题不具有无后效性,无法使用动态规划快速求解。
**背包问题**
- 背包问题是最典型的动态规划问题之一,具有 0-1 背包、完全背包、多重背包等变种。
- 0-1 背包的状态定义为前 $i$ 个物品在容量为 $c$ 的背包中的最大价值。根据不放入背包和放入背包两种决策,可得到最优子结构,并构建出状态转移方程。在空间优化中,由于每个状态依赖正上方和左上方的状态,因此需要倒序遍历列表,避免左上方状态被覆盖。
- 完全背包问题的每种物品的选取数量无限制,因此选择放入物品的状态转移与 0-1 背包问题不同。由于状态依赖正上方和正左方的状态,因此在空间优化中应当正序遍历。
- 零钱兑换问题是完全背包问题的一个变种。它从求“最大”价值变为求“最小”硬币数量,因此状态转移方程中的 $\max()$ 应改为 $\min()$ 。从追求“不超过”背包容量到追求“恰好”凑出目标金额,因此使用 $amt + 1$ 来表示“无法凑出目标金额”的无效解。
- 零钱兑换问题 II 从求“最少硬币数量”改为求“硬币组合数量”,状态转移方程相应地从 $\min()$ 改为求和运算符。
**编辑距离问题**
- 编辑距离Levenshtein 距离)用于衡量两个字符串之间的相似度,其定义为从一个字符串到另一个字符串的最少编辑步数,编辑操作包括添加、删除、替换。
- 编辑距离问题的状态定义为将 $s$ 的前 $i$ 个字符更改为 $t$ 的前 $j$ 个字符所需的最少编辑步数。当 $s[i] \ne t[j]$ 时,具有三种决策:添加、删除、替换,它们都有相应的剩余子问题。据此便可以找出最优子结构与构建状态转移方程。而当 $s[i] = t[j]$ 时,无须编辑当前字符。
- 在编辑距离中,状态依赖其正上方、正左方、左上方的状态,因此空间优化后正序或倒序遍历都无法正确地进行状态转移。为此,我们利用一个变量暂存左上方状态,从而转化到与完全背包问题等价的情况,可以在空间优化后进行正序遍历。