hello-algo/docs/chapter_tree/binary_search_tree.md

11 KiB
Executable File
Raw Blame History

二叉搜索树

「二叉搜索树 Binary Search Tree」满足以下条件

  1. 对于根节点,左子树中所有节点的值 < 根节点的值 < 右子树中所有节点的值;
  2. 任意节点的左、右子树也是二叉搜索树,即同样满足条件 1.

二叉搜索树

二叉搜索树的操作

查找节点

给定目标节点值 num ,可以根据二叉搜索树的性质来查找。我们声明一个节点 cur ,从二叉树的根节点 root 出发,循环比较节点值 cur.valnum 之间的大小关系

  • cur.val < num ,说明目标节点在 cur 的右子树中,因此执行 cur = cur.right
  • cur.val > num ,说明目标节点在 cur 的左子树中,因此执行 cur = cur.left
  • cur.val = num ,说明找到目标节点,跳出循环并返回该节点;

=== "<1>" bst_search_step1

=== "<2>" bst_search_step2

=== "<3>" bst_search_step3

=== "<4>" bst_search_step4

二叉搜索树的查找操作与二分查找算法的工作原理一致,都是每轮排除一半情况。循环次数最多为二叉树的高度,当二叉树平衡时,使用 O(\log n) 时间。

=== "Java"

```java title="binary_search_tree.java"
[class]{BinarySearchTree}-[func]{search}
```

=== "C++"

```cpp title="binary_search_tree.cpp"
[class]{BinarySearchTree}-[func]{search}
```

=== "Python"

```python title="binary_search_tree.py"
[class]{BinarySearchTree}-[func]{search}
```

=== "Go"

```go title="binary_search_tree.go"
[class]{binarySearchTree}-[func]{search}
```

=== "JavaScript"

```javascript title="binary_search_tree.js"
[class]{}-[func]{search}
```

=== "TypeScript"

```typescript title="binary_search_tree.ts"
[class]{}-[func]{search}
```

=== "C"

```c title="binary_search_tree.c"
[class]{binarySearchTree}-[func]{search}
```

=== "C#"

```csharp title="binary_search_tree.cs"
[class]{BinarySearchTree}-[func]{search}
```

=== "Swift"

```swift title="binary_search_tree.swift"
[class]{BinarySearchTree}-[func]{search}
```

=== "Zig"

```zig title="binary_search_tree.zig"
[class]{BinarySearchTree}-[func]{search}
```

插入节点

给定一个待插入元素 num ,为了保持二叉搜索树“左子树 < 根节点 < 右子树”的性质,插入操作分为两步:

  1. 查找插入位置:与查找操作相似,从根节点出发,根据当前节点值和 num 的大小关系循环向下搜索,直到越过叶节点(遍历至 \text{null} )时跳出循环;
  2. 在该位置插入节点:初始化节点 num ,将该节点置于 \text{null} 的位置;

二叉搜索树不允许存在重复节点,否则将违反其定义。因此,若待插入节点在树中已存在,则不执行插入,直接返回。

在二叉搜索树中插入节点

=== "Java"

```java title="binary_search_tree.java"
[class]{BinarySearchTree}-[func]{insert}
```

=== "C++"

```cpp title="binary_search_tree.cpp"
[class]{BinarySearchTree}-[func]{insert}
```

=== "Python"

```python title="binary_search_tree.py"
[class]{BinarySearchTree}-[func]{insert}
```

=== "Go"

```go title="binary_search_tree.go"
[class]{binarySearchTree}-[func]{insert}
```

=== "JavaScript"

```javascript title="binary_search_tree.js"
[class]{}-[func]{insert}
```

=== "TypeScript"

```typescript title="binary_search_tree.ts"
[class]{}-[func]{insert}
```

=== "C"

```c title="binary_search_tree.c"
[class]{binarySearchTree}-[func]{insert}
```

=== "C#"

```csharp title="binary_search_tree.cs"
[class]{BinarySearchTree}-[func]{insert}
```

=== "Swift"

```swift title="binary_search_tree.swift"
[class]{BinarySearchTree}-[func]{insert}
```

=== "Zig"

```zig title="binary_search_tree.zig"
[class]{BinarySearchTree}-[func]{insert}
```

为了插入节点,我们需要利用辅助节点 pre 保存上一轮循环的节点,这样在遍历至 \text{null} 时,我们可以获取到其父节点,从而完成节点插入操作。

与查找节点相同,插入节点使用 O(\log n) 时间。

删除节点

与插入节点类似,我们需要在删除操作后维持二叉搜索树的“左子树 < 根节点 < 右子树”的性质。首先,我们需要在二叉树中执行查找操作,获取待删除节点。接下来,根据待删除节点的子节点数量,删除操作需分为三种情况:

当待删除节点的子节点数量 = 0 时,表示待删除节点是叶节点,可以直接删除。

在二叉搜索树中删除节点(度为 0)

当待删除节点的子节点数量 = 1 时,将待删除节点替换为其子节点即可。

在二叉搜索树中删除节点(度为 1)

当待删除节点的子节点数量 = 2 时,删除操作分为三步:

  1. 找到待删除节点在“中序遍历序列”中的下一个节点,记为 nex
  2. 在树中递归删除节点 nex
  3. 使用 nex 替换待删除节点;

=== "<1>" bst_remove_case3_step1

=== "<2>" bst_remove_case3_step2

=== "<3>" bst_remove_case3_step3

=== "<4>" bst_remove_case3_step4

删除节点操作同样使用 O(\log n) 时间,其中查找待删除节点需要 O(\log n) 时间,获取中序遍历后继节点需要 O(\log n) 时间。

=== "Java"

```java title="binary_search_tree.java"
[class]{BinarySearchTree}-[func]{remove}

[class]{BinarySearchTree}-[func]{getInOrderNext}
```

=== "C++"

```cpp title="binary_search_tree.cpp"
[class]{BinarySearchTree}-[func]{remove}

[class]{BinarySearchTree}-[func]{getInOrderNext}
```

=== "Python"

```python title="binary_search_tree.py"
[class]{BinarySearchTree}-[func]{remove}

[class]{BinarySearchTree}-[func]{get_inorder_next}
```

=== "Go"

```go title="binary_search_tree.go"
[class]{binarySearchTree}-[func]{remove}

[class]{binarySearchTree}-[func]{getInOrderNext}
```

=== "JavaScript"

```javascript title="binary_search_tree.js"
[class]{}-[func]{remove}

[class]{}-[func]{getInOrderNext}
```

=== "TypeScript"

```typescript title="binary_search_tree.ts"
[class]{}-[func]{remove}

[class]{}-[func]{getInOrderNext}
```

=== "C"

```c title="binary_search_tree.c"
[class]{binarySearchTree}-[func]{remove}

[class]{binarySearchTree}-[func]{getInOrderNext}
```

=== "C#"

```csharp title="binary_search_tree.cs"
[class]{BinarySearchTree}-[func]{remove}

[class]{BinarySearchTree}-[func]{getInOrderNext}
```

=== "Swift"

```swift title="binary_search_tree.swift"
[class]{BinarySearchTree}-[func]{remove}

[class]{BinarySearchTree}-[func]{getInOrderNext}
```

=== "Zig"

```zig title="binary_search_tree.zig"
[class]{BinarySearchTree}-[func]{remove}

[class]{BinarySearchTree}-[func]{getInOrderNext}
```

排序

我们知道,二叉树的中序遍历遵循“左 \rightarrow\rightarrow 右”的遍历顺序,而二叉搜索树满足“左子节点 < 根节点 < 右子节点”的大小关系。因此,在二叉搜索树中进行中序遍历时,总是会优先遍历下一个最小节点,从而得出一个重要性质:二叉搜索树的中序遍历序列是升序的

利用中序遍历升序的性质,我们在二叉搜索树中获取有序数据仅需 O(n) 时间,无需额外排序,非常高效。

二叉搜索树的中序遍历序列

二叉搜索树的效率

假设给定 n 个数字,最常见的存储方式是「数组」。对于这串乱序的数字,常见操作的效率如下:

  • 查找元素:由于数组是无序的,因此需要遍历数组来确定,使用 O(n) 时间;
  • 插入元素:只需将元素添加至数组尾部即可,使用 O(1) 时间;
  • 删除元素:先查找元素,使用 O(n) 时间,再在数组中删除该元素,使用 O(n) 时间;
  • 获取最小 / 最大元素:需要遍历数组来确定,使用 O(n) 时间;

为了获得先验信息,我们可以预先将数组元素进行排序,得到一个「排序数组」。此时操作效率如下:

  • 查找元素:由于数组已排序,可以使用二分查找,平均使用 O(\log n) 时间;
  • 插入元素:先查找插入位置,使用 O(\log n) 时间,再插入到指定位置,使用 O(n) 时间;
  • 删除元素:先查找元素,使用 O(\log n) 时间,再在数组中删除该元素,使用 O(n) 时间;
  • 获取最小 / 最大元素:数组头部和尾部元素即是最小和最大元素,使用 O(1) 时间;

观察可知,无序数组和有序数组中的各项操作的时间复杂度呈现“偏科”的特点,即有的快有的慢。然而,二叉搜索树的各项操作的时间复杂度都是对数阶,在数据量 n 较大时具有显著优势

无序数组 有序数组 二叉搜索树
查找指定元素 O(n) O(\log n) O(\log n)
插入元素 O(1) O(n) O(\log n)
删除元素 O(n) O(n) O(\log n)
获取最小 / 最大元素 O(n) O(1) O(\log n)

二叉搜索树的退化

在理想情况下,我们希望二叉搜索树是“平衡”的,这样就可以在 \log n 轮循环内查找任意节点。

然而,如果我们在二叉搜索树中不断地插入和删除节点,可能导致二叉树退化为链表,这时各种操作的时间复杂度也会退化为 O(n)

二叉搜索树的平衡与退化

二叉搜索树常见应用

  • 用作系统中的多级索引,实现高效的查找、插入、删除操作。
  • 作为某些搜索算法的底层数据结构。
  • 用于存储数据流,以保持其有序状态。