* Replace 结点 with 节点 Update the footnotes in the figures * Update mindmap * Reduce the size of the mindmap.png
18 KiB
AVL 树 *
在「二叉搜索树」章节中提到,在进行多次插入与删除操作后,二叉搜索树可能会退化为链表。此时所有操作的时间复杂度都会由 O(\log n)
劣化至 O(n)
。
如下图所示,执行两步删除节点后,该二叉搜索树就会退化为链表。
再比如,在以下完美二叉树中插入两个节点后,树严重向左偏斜,查找操作的时间复杂度也随之发生劣化。
G. M. Adelson-Velsky 和 E. M. Landis 在其 1962 年发表的论文 "An algorithm for the organization of information" 中提出了「AVL 树」。论文中描述了一系列操作,使得在不断添加与删除节点后,AVL 树仍然不会发生退化,进而使得各种操作的时间复杂度均能保持在 O(\log n)
级别。
换言之,在频繁增删查改的使用场景中,AVL 树可始终保持很高的数据增删查改效率,具有很好的应用价值。
AVL 树常见术语
「AVL 树」既是「二叉搜索树」又是「平衡二叉树」,同时满足这两种二叉树的所有性质,因此又被称为「平衡二叉搜索树」。
节点高度
在 AVL 树的操作中,需要获取节点「高度 Height」,所以给 AVL 树的节点类添加 height
变量。
=== "Java"
```java title=""
/* AVL 树节点类 */
class TreeNode {
public int val; // 节点值
public int height; // 节点高度
public TreeNode left; // 左子节点
public TreeNode right; // 右子节点
public TreeNode(int x) { val = x; }
}
```
=== "C++"
```cpp title=""
/* AVL 树节点类 */
struct TreeNode {
int val{}; // 节点值
int height = 0; // 节点高度
TreeNode *left{}; // 左子节点
TreeNode *right{}; // 右子节点
TreeNode() = default;
explicit TreeNode(int x) : val(x){}
};
```
=== "Python"
```python title=""
""" AVL 树节点类 """
class TreeNode:
def __init__(self, val: int):
self.val: int = val # 节点值
self.height: int = 0 # 节点高度
self.left: Optional[TreeNode] = None # 左子节点引用
self.right: Optional[TreeNode] = None # 右子节点引用
```
=== "Go"
```go title=""
/* AVL 树节点类 */
type TreeNode struct {
Val int // 节点值
Height int // 节点高度
Left *TreeNode // 左子节点引用
Right *TreeNode // 右子节点引用
}
```
=== "JavaScript"
```javascript title=""
class TreeNode {
val; // 节点值
height; //节点高度
left; // 左子节点指针
right; // 右子节点指针
constructor(val, left, right, height) {
this.val = val === undefined ? 0 : val;
this.height = height === undefined ? 0 : height;
this.left = left === undefined ? null : left;
this.right = right === undefined ? null : right;
}
}
```
=== "TypeScript"
```typescript title=""
class TreeNode {
val: number; // 节点值
height: number; // 节点高度
left: TreeNode | null; // 左子节点指针
right: TreeNode | null; // 右子节点指针
constructor(val?: number, height?: number, left?: TreeNode | null, right?: TreeNode | null) {
this.val = val === undefined ? 0 : val;
this.height = height === undefined ? 0 : height;
this.left = left === undefined ? null : left;
this.right = right === undefined ? null : right;
}
}
```
=== "C"
```c title=""
```
=== "C#"
```csharp title=""
/* AVL 树节点类 */
class TreeNode {
public int val; // 节点值
public int height; // 节点高度
public TreeNode? left; // 左子节点
public TreeNode? right; // 右子节点
public TreeNode(int x) { val = x; }
}
```
=== "Swift"
```swift title=""
/* AVL 树节点类 */
class TreeNode {
var val: Int // 节点值
var height: Int // 节点高度
var left: TreeNode? // 左子节点
var right: TreeNode? // 右子节点
init(x: Int) {
val = x
height = 0
}
}
```
=== "Zig"
```zig title=""
```
「节点高度」是最远叶节点到该节点的距离,即走过的「边」的数量。需要特别注意,叶节点的高度为 0 ,空节点的高度为 -1。我们封装两个工具函数,分别用于获取与更新节点的高度。
=== "Java"
```java title="avl_tree.java"
[class]{AVLTree}-[func]{height}
[class]{AVLTree}-[func]{updateHeight}
```
=== "C++"
```cpp title="avl_tree.cpp"
[class]{AVLTree}-[func]{height}
[class]{AVLTree}-[func]{updateHeight}
```
=== "Python"
```python title="avl_tree.py"
[class]{AVLTree}-[func]{height}
[class]{AVLTree}-[func]{__update_height}
```
=== "Go"
```go title="avl_tree.go"
[class]{aVLTree}-[func]{height}
[class]{aVLTree}-[func]{updateHeight}
```
=== "JavaScript"
```javascript title="avl_tree.js"
[class]{AVLTree}-[func]{height}
[class]{AVLTree}-[func]{#updateHeight}
```
=== "TypeScript"
```typescript title="avl_tree.ts"
[class]{AVLTree}-[func]{height}
[class]{AVLTree}-[func]{updateHeight}
```
=== "C"
```c title="avl_tree.c"
[class]{aVLTree}-[func]{height}
[class]{aVLTree}-[func]{updateHeight}
```
=== "C#"
```csharp title="avl_tree.cs"
[class]{AVLTree}-[func]{height}
[class]{AVLTree}-[func]{updateHeight}
```
=== "Swift"
```swift title="avl_tree.swift"
[class]{AVLTree}-[func]{height}
[class]{AVLTree}-[func]{updateHeight}
```
=== "Zig"
```zig title="avl_tree.zig"
[class]{AVLTree}-[func]{height}
[class]{AVLTree}-[func]{updateHeight}
```
节点平衡因子
节点的「平衡因子 Balance Factor」是 节点的左子树高度减去右子树高度,并定义空节点的平衡因子为 0 。同样地,我们将获取节点平衡因子封装成函数,以便后续使用。
=== "Java"
```java title="avl_tree.java"
[class]{AVLTree}-[func]{balanceFactor}
```
=== "C++"
```cpp title="avl_tree.cpp"
[class]{AVLTree}-[func]{balanceFactor}
```
=== "Python"
```python title="avl_tree.py"
[class]{AVLTree}-[func]{balance_factor}
```
=== "Go"
```go title="avl_tree.go"
[class]{aVLTree}-[func]{balanceFactor}
```
=== "JavaScript"
```javascript title="avl_tree.js"
[class]{AVLTree}-[func]{balanceFactor}
```
=== "TypeScript"
```typescript title="avl_tree.ts"
[class]{AVLTree}-[func]{balanceFactor}
```
=== "C"
```c title="avl_tree.c"
[class]{aVLTree}-[func]{balanceFactor}
```
=== "C#"
```csharp title="avl_tree.cs"
[class]{AVLTree}-[func]{balanceFactor}
```
=== "Swift"
```swift title="avl_tree.swift"
[class]{AVLTree}-[func]{balanceFactor}
```
=== "Zig"
```zig title="avl_tree.zig"
[class]{AVLTree}-[func]{balanceFactor}
```
!!! note
设平衡因子为 $f$ ,则一棵 AVL 树的任意节点的平衡因子皆满足 $-1 \le f \le 1$ 。
AVL 树旋转
AVL 树的独特之处在于「旋转 Rotation」的操作,其可 在不影响二叉树中序遍历序列的前提下,使失衡节点重新恢复平衡。换言之,旋转操作既可以使树保持为「二叉搜索树」,也可以使树重新恢复为「平衡二叉树」。
我们将平衡因子的绝对值 > 1
的节点称为「失衡节点」。根据节点的失衡情况,旋转操作分为 右旋、左旋、先右旋后左旋、先左旋后右旋,接下来我们来一起来看看它们是如何操作的。
Case 1 - 右旋
如下图所示(节点下方为「平衡因子」),从底至顶看,二叉树中首个失衡节点是 节点 3。我们聚焦在以该失衡节点为根节点的子树上,将该节点记为 node
,将其左子节点记为 child
,执行「右旋」操作。完成右旋后,该子树已经恢复平衡,并且仍然为二叉搜索树。
进而,如果节点 child
本身有右子节点(记为 grandChild
),则需要在「右旋」中添加一步:将 grandChild
作为 node
的左子节点。
“向右旋转”是一种形象化的说法,实际需要通过修改节点指针实现,代码如下所示。
=== "Java"
```java title="avl_tree.java"
[class]{AVLTree}-[func]{rightRotate}
```
=== "C++"
```cpp title="avl_tree.cpp"
[class]{AVLTree}-[func]{rightRotate}
```
=== "Python"
```python title="avl_tree.py"
[class]{AVLTree}-[func]{__right_rotate}
```
=== "Go"
```go title="avl_tree.go"
[class]{aVLTree}-[func]{rightRotate}
```
=== "JavaScript"
```javascript title="avl_tree.js"
[class]{AVLTree}-[func]{#rightRotate}
```
=== "TypeScript"
```typescript title="avl_tree.ts"
[class]{AVLTree}-[func]{rightRotate}
```
=== "C"
```c title="avl_tree.c"
[class]{aVLTree}-[func]{rightRotate}
```
=== "C#"
```csharp title="avl_tree.cs"
[class]{AVLTree}-[func]{rightRotate}
```
=== "Swift"
```swift title="avl_tree.swift"
[class]{AVLTree}-[func]{rightRotate}
```
=== "Zig"
```zig title="avl_tree.zig"
[class]{AVLTree}-[func]{rightRotate}
```
Case 2 - 左旋
类似地,如果将取上述失衡二叉树的“镜像”,那么则需要「左旋」操作。
同理,若节点 child
本身有左子节点(记为 grandChild
),则需要在「左旋」中添加一步:将 grandChild
作为 node
的右子节点。
观察发现,「左旋」和「右旋」操作是镜像对称的,两者对应解决的两种失衡情况也是对称的。根据对称性,我们可以很方便地从「右旋」推导出「左旋」。具体地,只需将「右旋」代码中的把所有的 left
替换为 right
、所有的 right
替换为 left
,即可得到「左旋」代码。
=== "Java"
```java title="avl_tree.java"
[class]{AVLTree}-[func]{leftRotate}
```
=== "C++"
```cpp title="avl_tree.cpp"
[class]{AVLTree}-[func]{leftRotate}
```
=== "Python"
```python title="avl_tree.py"
[class]{AVLTree}-[func]{__left_rotate}
```
=== "Go"
```go title="avl_tree.go"
[class]{aVLTree}-[func]{leftRotate}
```
=== "JavaScript"
```javascript title="avl_tree.js"
[class]{AVLTree}-[func]{#leftRotate}
```
=== "TypeScript"
```typescript title="avl_tree.ts"
[class]{AVLTree}-[func]{leftRotate}
```
=== "C"
```c title="avl_tree.c"
[class]{aVLTree}-[func]{leftRotate}
```
=== "C#"
```csharp title="avl_tree.cs"
[class]{AVLTree}-[func]{leftRotate}
```
=== "Swift"
```swift title="avl_tree.swift"
[class]{AVLTree}-[func]{leftRotate}
```
=== "Zig"
```zig title="avl_tree.zig"
[class]{AVLTree}-[func]{leftRotate}
```
Case 3 - 先左后右
对于下图的失衡节点 3 ,单一使用左旋或右旋都无法使子树恢复平衡,此时需要「先左旋后右旋」,即先对 child
执行「左旋」,再对 node
执行「右旋」。
Case 4 - 先右后左
同理,取以上失衡二叉树的镜像,则需要「先右旋后左旋」,即先对 child
执行「右旋」,然后对 node
执行「左旋」。
旋转的选择
下图描述的四种失衡情况与上述 Cases 逐个对应,分别需采用 右旋、左旋、先右后左、先左后右 的旋转操作。
具体地,在代码中使用 失衡节点的平衡因子、较高一侧子节点的平衡因子 来确定失衡节点属于上图中的哪种情况。
失衡节点的平衡因子 | 子节点的平衡因子 | 应采用的旋转方法 |
---|---|---|
>0 (即左偏树) |
\geq 0 |
右旋 |
>0 (即左偏树) |
<0 |
先左旋后右旋 |
<0 (即右偏树) |
\leq 0 |
左旋 |
<0 (即右偏树) |
>0 |
先右旋后左旋 |
为方便使用,我们将旋转操作封装成一个函数。至此,我们可以使用此函数来旋转各种失衡情况,使失衡节点重新恢复平衡。
=== "Java"
```java title="avl_tree.java"
[class]{AVLTree}-[func]{rotate}
```
=== "C++"
```cpp title="avl_tree.cpp"
[class]{AVLTree}-[func]{rotate}
```
=== "Python"
```python title="avl_tree.py"
[class]{AVLTree}-[func]{__rotate}
```
=== "Go"
```go title="avl_tree.go"
[class]{aVLTree}-[func]{rotate}
```
=== "JavaScript"
```javascript title="avl_tree.js"
[class]{AVLTree}-[func]{#rotate}
```
=== "TypeScript"
```typescript title="avl_tree.ts"
[class]{AVLTree}-[func]{rotate}
```
=== "C"
```c title="avl_tree.c"
[class]{aVLTree}-[func]{rotate}
```
=== "C#"
```csharp title="avl_tree.cs"
[class]{AVLTree}-[func]{rotate}
```
=== "Swift"
```swift title="avl_tree.swift"
[class]{AVLTree}-[func]{rotate}
```
=== "Zig"
```zig title="avl_tree.zig"
[class]{AVLTree}-[func]{rotate}
```
AVL 树常用操作
插入节点
「AVL 树」的节点插入操作与「二叉搜索树」主体类似。不同的是,在插入节点后,从该节点到根节点的路径上会出现一系列「失衡节点」。所以,我们需要从该节点开始,从底至顶地执行旋转操作,使所有失衡节点恢复平衡。
=== "Java"
```java title="avl_tree.java"
[class]{AVLTree}-[func]{insert}
[class]{AVLTree}-[func]{insertHelper}
```
=== "C++"
```cpp title="avl_tree.cpp"
[class]{AVLTree}-[func]{insert}
[class]{AVLTree}-[func]{insertHelper}
```
=== "Python"
```python title="avl_tree.py"
[class]{AVLTree}-[func]{insert}
[class]{AVLTree}-[func]{__insert_helper}
```
=== "Go"
```go title="avl_tree.go"
[class]{aVLTree}-[func]{insert}
[class]{aVLTree}-[func]{insertHelper}
```
=== "JavaScript"
```javascript title="avl_tree.js"
[class]{AVLTree}-[func]{insert}
[class]{AVLTree}-[func]{#insertHelper}
```
=== "TypeScript"
```typescript title="avl_tree.ts"
[class]{AVLTree}-[func]{insert}
[class]{AVLTree}-[func]{insertHelper}
```
=== "C"
```c title="avl_tree.c"
[class]{aVLTree}-[func]{insert}
[class]{aVLTree}-[func]{insertHelper}
```
=== "C#"
```csharp title="avl_tree.cs"
[class]{AVLTree}-[func]{insert}
[class]{AVLTree}-[func]{insertHelper}
```
=== "Swift"
```swift title="avl_tree.swift"
[class]{AVLTree}-[func]{insert}
[class]{AVLTree}-[func]{insertHelper}
```
=== "Zig"
```zig title="avl_tree.zig"
[class]{AVLTree}-[func]{insert}
[class]{AVLTree}-[func]{insertHelper}
```
删除节点
「AVL 树」删除节点操作与「二叉搜索树」删除节点操作总体相同。类似地,在删除节点后,也需要从底至顶地执行旋转操作,使所有失衡节点恢复平衡。
=== "Java"
```java title="avl_tree.java"
[class]{AVLTree}-[func]{remove}
[class]{AVLTree}-[func]{removeHelper}
[class]{AVLTree}-[func]{getInOrderNext}
```
=== "C++"
```cpp title="avl_tree.cpp"
[class]{AVLTree}-[func]{remove}
[class]{AVLTree}-[func]{removeHelper}
[class]{AVLTree}-[func]{getInOrderNext}
```
=== "Python"
```python title="avl_tree.py"
[class]{AVLTree}-[func]{remove}
[class]{AVLTree}-[func]{__remove_helper}
[class]{AVLTree}-[func]{__get_inorder_next}
```
=== "Go"
```go title="avl_tree.go"
[class]{aVLTree}-[func]{remove}
[class]{aVLTree}-[func]{removeHelper}
[class]{aVLTree}-[func]{getInOrderNext}
```
=== "JavaScript"
```javascript title="avl_tree.js"
[class]{AVLTree}-[func]{remove}
[class]{AVLTree}-[func]{#removeHelper}
[class]{AVLTree}-[func]{#getInOrderNext}
```
=== "TypeScript"
```typescript title="avl_tree.ts"
[class]{AVLTree}-[func]{remove}
[class]{AVLTree}-[func]{removeHelper}
[class]{AVLTree}-[func]{getInOrderNext}
```
=== "C"
```c title="avl_tree.c"
[class]{aVLTree}-[func]{remove}
[class]{aVLTree}-[func]{removeHelper}
[class]{aVLTree}-[func]{getInOrderNext}
```
=== "C#"
```csharp title="avl_tree.cs"
[class]{AVLTree}-[func]{remove}
[class]{AVLTree}-[func]{removeHelper}
[class]{AVLTree}-[func]{getInOrderNext}
```
=== "Swift"
```swift title="avl_tree.swift"
[class]{AVLTree}-[func]{remove}
[class]{AVLTree}-[func]{removeHelper}
[class]{AVLTree}-[func]{getInOrderNext}
```
=== "Zig"
```zig title="avl_tree.zig"
[class]{AVLTree}-[func]{remove}
[class]{AVLTree}-[func]{removeHelper}
[class]{AVLTree}-[func]{getInOrderNext}
```
查找节点
「AVL 树」的节点查找操作与「二叉搜索树」一致,在此不再赘述。
AVL 树典型应用
- 组织存储大型数据,适用于高频查找、低频增删场景;
- 用于建立数据库中的索引系统;
!!! question "为什么红黑树比 AVL 树更受欢迎?"
红黑树的平衡条件相对宽松,因此在红黑树中插入与删除节点所需的旋转操作相对更少,节点增删操作相比 AVL 树的效率更高。