* Replace 结点 with 节点 Update the footnotes in the figures * Update mindmap * Reduce the size of the mindmap.png
3.9 KiB
建堆操作 *
如果我们想要根据输入列表生成一个堆,这个过程被称为「建堆」。
两种建堆方法
借助入堆方法实现
最直接的方法是借助“元素入堆操作”实现,首先创建一个空堆,然后将列表元素依次添加到堆中。
设元素数量为 n
,则最后一个元素入堆的时间复杂度为 O(\log n)
。在依次添加元素时,堆的平均长度为 \frac{n}{2}
,因此该方法的总体时间复杂度为 O(n \log n)
。
基于堆化操作实现
有趣的是,存在一种更高效的建堆方法,其时间复杂度仅为 O(n)
。我们先将列表所有元素原封不动添加到堆中,然后迭代地对各个节点执行“从顶至底堆化”。当然,我们不需要对叶节点执行堆化操作,因为它们没有子节点。
=== "Java"
```java title="my_heap.java"
[class]{MaxHeap}-[func]{MaxHeap}
```
=== "C++"
```cpp title="my_heap.cpp"
[class]{MaxHeap}-[func]{MaxHeap}
```
=== "Python"
```python title="my_heap.py"
[class]{MaxHeap}-[func]{__init__}
```
=== "Go"
```go title="my_heap.go"
[class]{maxHeap}-[func]{newMaxHeap}
```
=== "JavaScript"
```javascript title="my_heap.js"
[class]{MaxHeap}-[func]{constructor}
```
=== "TypeScript"
```typescript title="my_heap.ts"
[class]{MaxHeap}-[func]{constructor}
```
=== "C"
```c title="my_heap.c"
[class]{maxHeap}-[func]{newMaxHeap}
```
=== "C#"
```csharp title="my_heap.cs"
[class]{MaxHeap}-[func]{MaxHeap}
```
=== "Swift"
```swift title="my_heap.swift"
[class]{MaxHeap}-[func]{init}
```
=== "Zig"
```zig title="my_heap.zig"
[class]{MaxHeap}-[func]{init}
```
复杂度分析
为什么第二种建堆方法的时间复杂度是 O(n)
?我们来展开推算一下。
- 完全二叉树中,设节点总数为
n
,则叶节点数量为(n + 1) / 2
,其中/
为向下整除。因此,在排除叶节点后,需要堆化的节点数量为(n - 1)/2
,复杂度为O(n)
; - 在从顶至底堆化的过程中,每个节点最多堆化到叶节点,因此最大迭代次数为二叉树高度
O(\log n)
;
将上述两者相乘,可得到建堆过程的时间复杂度为 $O(n \log n)$。然而,这个估算结果并不准确,因为我们没有考虑到二叉树底层节点数量远多于顶层节点的特性。
接下来我们来进行更为详细的计算。为了减小计算难度,我们假设树是一个“完美二叉树”,该假设不会影响计算结果的正确性。设二叉树(即堆)节点数量为 n
,树高度为 h
。上文提到,节点堆化最大迭代次数等于该节点到叶节点的距离,而该距离正是“节点高度”。
因此,我们可以将各层的“节点数量 \times
节点高度”求和,从而得到所有节点的堆化迭代次数的总和。
T(h) = 2^0h + 2^1(h-1) + 2^2(h-2) + \cdots + 2^{(h-1)}\times1
化简上式需要借助中学的数列知识,先对 T(h)
乘以 2
,得到
\begin{aligned}
T(h) & = 2^0h + 2^1(h-1) + 2^2(h-2) + \cdots + 2^{h-1}\times1 \newline
2 T(h) & = 2^1h + 2^2(h-1) + 2^3(h-2) + \cdots + 2^{h}\times1 \newline
\end{aligned}
使用错位相减法,令下式 2 T(h)
减去上式 T(h)
,可得
2T(h) - T(h) = T(h) = -2^0h + 2^1 + 2^2 + \cdots + 2^{h-1} + 2^h
观察上式,发现 T(h)
是一个等比数列,可直接使用求和公式,得到时间复杂度为
\begin{aligned}
T(h) & = 2 \frac{1 - 2^h}{1 - 2} - h \newline
& = 2^{h+1} - h \newline
& = O(2^h)
\end{aligned}
进一步地,高度为 h
的完美二叉树的节点数量为 n = 2^{h+1} - 1
,易得复杂度为 O(2^h) = O(n)
。以上推算表明,输入列表并建堆的时间复杂度为 O(n)
,非常高效。