39 KiB
Executable File
comments |
---|
true |
7.4. AVL 树 *
在「二叉搜索树」章节中提到,在进行多次插入与删除操作后,二叉搜索树可能会退化为链表。此时所有操作的时间复杂度都会由 O(\log n)
劣化至 O(n)
。
如下图所示,执行两步删除结点后,该二叉搜索树就会退化为链表。
再比如,在以下完美二叉树中插入两个结点后,树严重向左偏斜,查找操作的时间复杂度也随之发生劣化。
G. M. Adelson-Velsky 和 E. M. Landis 在其 1962 年发表的论文 "An algorithm for the organization of information" 中提出了「AVL 树」。论文中描述了一系列操作,使得在不断添加与删除结点后,AVL 树仍然不会发生退化,进而使得各种操作的时间复杂度均能保持在 O(\log n)
级别。
换言之,在频繁增删查改的使用场景中,AVL 树可始终保持很高的数据增删查改效率,具有很好的应用价值。
7.4.1. AVL 树常见术语
「AVL 树」既是「二叉搜索树」又是「平衡二叉树」,同时满足这两种二叉树的所有性质,因此又被称为「平衡二叉搜索树」。
结点高度
在 AVL 树的操作中,需要获取结点「高度 Height」,所以给 AVL 树的结点类添加 height
变量。
=== "Java"
```java title=""
/* AVL 树结点类 */
class TreeNode {
public int val; // 结点值
public int height; // 结点高度
public TreeNode left; // 左子结点
public TreeNode right; // 右子结点
public TreeNode(int x) { val = x; }
}
```
=== "C++"
```cpp title=""
/* AVL 树结点类 */
struct TreeNode {
int val{}; // 结点值
int height = 0; // 结点高度
TreeNode *left{}; // 左子结点
TreeNode *right{}; // 右子结点
TreeNode() = default;
explicit TreeNode(int x) : val(x){}
};
```
=== "Python"
```python title=""
""" AVL 树结点类 """
class TreeNode:
def __init__(self, val=None, left=None, right=None):
self.val = val # 结点值
self.height = 0 # 结点高度
self.left = left # 左子结点引用
self.right = right # 右子结点引用
```
=== "Go"
```go title=""
/* AVL 树结点类 */
type TreeNode struct {
Val int // 结点值
Height int // 结点高度
Left *TreeNode // 左子结点引用
Right *TreeNode // 右子结点引用
}
```
=== "JavaScript"
```javascript title=""
class TreeNode {
val; // 结点值
height; //结点高度
left; // 左子结点指针
right; // 右子结点指针
constructor(val, left, right, height) {
this.val = val === undefined ? 0 : val;
this.height = height === undefined ? 0 : height;
this.left = left === undefined ? null : left;
this.right = right === undefined ? null : right;
}
}
```
=== "TypeScript"
```typescript title=""
class TreeNode {
val: number; // 结点值
height: number; // 结点高度
left: TreeNode | null; // 左子结点指针
right: TreeNode | null; // 右子结点指针
constructor(val?: number, height?: number, left?: TreeNode | null, right?: TreeNode | null) {
this.val = val === undefined ? 0 : val;
this.height = height === undefined ? 0 : height;
this.left = left === undefined ? null : left;
this.right = right === undefined ? null : right;
}
}
```
=== "C"
```c title=""
```
=== "C#"
```csharp title=""
/* AVL 树结点类 */
class TreeNode {
public int val; // 结点值
public int height; // 结点高度
public TreeNode? left; // 左子结点
public TreeNode? right; // 右子结点
public TreeNode(int x) { val = x; }
}
```
=== "Swift"
```swift title=""
/* AVL 树结点类 */
class TreeNode {
var val: Int // 结点值
var height: Int // 结点高度
var left: TreeNode? // 左子结点
var right: TreeNode? // 右子结点
init(x: Int) {
val = x
height = 0
}
}
```
=== "Zig"
```zig title=""
```
「结点高度」是最远叶结点到该结点的距离,即走过的「边」的数量。需要特别注意,叶结点的高度为 0 ,空结点的高度为 -1。我们封装两个工具函数,分别用于获取与更新结点的高度。
=== "Java"
```java title="avl_tree.java"
[class]{AVLTree}-[func]{height}
[class]{AVLTree}-[func]{updateHeight}
```
=== "C++"
```cpp title="avl_tree.cpp"
/* 获取结点高度 */
int height(TreeNode* node) {
// 空结点高度为 -1 ,叶结点高度为 0
return node == nullptr ? -1 : node->height;
}
/* 更新结点高度 */
void updateHeight(TreeNode* node) {
// 结点高度等于最高子树高度 + 1
node->height = max(height(node->left), height(node->right)) + 1;
}
```
=== "Python"
```python title="avl_tree.py"
[class]{AVLTree}-[func]{height}
[class]{AVLTree}-[func]{__update_height}
```
=== "Go"
```go title="avl_tree.go"
/* 获取结点高度 */
func height(node *TreeNode) int {
// 空结点高度为 -1 ,叶结点高度为 0
if node != nil {
return node.Height
}
return -1
}
/* 更新结点高度 */
func updateHeight(node *TreeNode) {
lh := height(node.Left)
rh := height(node.Right)
// 结点高度等于最高子树高度 + 1
if lh > rh {
node.Height = lh + 1
} else {
node.Height = rh + 1
}
}
```
=== "JavaScript"
```javascript title="avl_tree.js"
/* 获取结点高度 */
height(node) {
// 空结点高度为 -1 ,叶结点高度为 0
return node === null ? -1 : node.height;
}
/* 更新结点高度 */
updateHeight(node) {
// 结点高度等于最高子树高度 + 1
node.height = Math.max(this.height(node.left), this.height(node.right)) + 1;
}
```
=== "TypeScript"
```typescript title="avl_tree.ts"
/* 获取结点高度 */
height(node: TreeNode): number {
// 空结点高度为 -1 ,叶结点高度为 0
return node === null ? -1 : node.height;
}
/* 更新结点高度 */
updateHeight(node: TreeNode): void {
// 结点高度等于最高子树高度 + 1
node.height = Math.max(this.height(node.left), this.height(node.right)) + 1;
}
```
=== "C"
```c title="avl_tree.c"
```
=== "C#"
```csharp title="avl_tree.cs"
/* 获取结点高度 */
public int height(TreeNode? node)
{
// 空结点高度为 -1 ,叶结点高度为 0
return node == null ? -1 : node.height;
}
/* 更新结点高度 */
private void updateHeight(TreeNode node)
{
// 结点高度等于最高子树高度 + 1
node.height = Math.Max(height(node.left), height(node.right)) + 1;
}
```
=== "Swift"
```swift title="avl_tree.swift"
/* 获取结点高度 */
func height(node: TreeNode?) -> Int {
// 空结点高度为 -1 ,叶结点高度为 0
node == nil ? -1 : node!.height
}
/* 更新结点高度 */
func updateHeight(node: TreeNode?) {
// 结点高度等于最高子树高度 + 1
node?.height = max(height(node: node?.left), height(node: node?.right)) + 1
}
```
=== "Zig"
```zig title="avl_tree.zig"
```
结点平衡因子
结点的「平衡因子 Balance Factor」是 结点的左子树高度减去右子树高度,并定义空结点的平衡因子为 0 。同样地,我们将获取结点平衡因子封装成函数,以便后续使用。
=== "Java"
```java title="avl_tree.java"
[class]{AVLTree}-[func]{balanceFactor}
```
=== "C++"
```cpp title="avl_tree.cpp"
[class]{AVLTree}-[func]{balanceFactor}
```
=== "Python"
```python title="avl_tree.py"
[class]{AVLTree}-[func]{balance_factor}
```
=== "Go"
```go title="avl_tree.go"
/* 获取平衡因子 */
func balanceFactor(node *TreeNode) int {
// 空结点平衡因子为 0
if node == nil {
return 0
}
// 结点平衡因子 = 左子树高度 - 右子树高度
return height(node.Left) - height(node.Right)
}
```
=== "JavaScript"
```javascript title="avl_tree.js"
[class]{AVLTree}-[func]{balanceFactor}
```
=== "TypeScript"
```typescript title="avl_tree.ts"
[class]{AVLTree}-[func]{balanceFactor}
```
=== "C"
```c title="avl_tree.c"
```
=== "C#"
```csharp title="avl_tree.cs"
/* 获取平衡因子 */
public int balanceFactor(TreeNode? node)
{
// 空结点平衡因子为 0
if (node == null) return 0;
// 结点平衡因子 = 左子树高度 - 右子树高度
return height(node.left) - height(node.right);
}
```
=== "Swift"
```swift title="avl_tree.swift"
/* 获取平衡因子 */
func balanceFactor(node: TreeNode?) -> Int {
// 空结点平衡因子为 0
guard let node = node else { return 0 }
// 结点平衡因子 = 左子树高度 - 右子树高度
return height(node: node.left) - height(node: node.right)
}
```
=== "Zig"
```zig title="avl_tree.zig"
```
!!! note
设平衡因子为 $f$ ,则一棵 AVL 树的任意结点的平衡因子皆满足 $-1 \le f \le 1$ 。
7.4.2. AVL 树旋转
AVL 树的独特之处在于「旋转 Rotation」的操作,其可 在不影响二叉树中序遍历序列的前提下,使失衡结点重新恢复平衡。换言之,旋转操作既可以使树保持为「二叉搜索树」,也可以使树重新恢复为「平衡二叉树」。
我们将平衡因子的绝对值 > 1
的结点称为「失衡结点」。根据结点的失衡情况,旋转操作分为 右旋、左旋、先右旋后左旋、先左旋后右旋,接下来我们来一起来看看它们是如何操作的。
Case 1 - 右旋
如下图所示(结点下方为「平衡因子」),从底至顶看,二叉树中首个失衡结点是 结点 3。我们聚焦在以该失衡结点为根结点的子树上,将该结点记为 node
,将其左子结点记为 child
,执行「右旋」操作。完成右旋后,该子树已经恢复平衡,并且仍然为二叉搜索树。
进而,如果结点 child
本身有右子结点(记为 grandChild
),则需要在「右旋」中添加一步:将 grandChild
作为 node
的左子结点。
“向右旋转”是一种形象化的说法,实际需要通过修改结点指针实现,代码如下所示。
=== "Java"
```java title="avl_tree.java"
[class]{AVLTree}-[func]{rightRotate}
```
=== "C++"
```cpp title="avl_tree.cpp"
[class]{AVLTree}-[func]{rightRotate}
```
=== "Python"
```python title="avl_tree.py"
[class]{AVLTree}-[func]{__right_rotate}
```
=== "Go"
```go title="avl_tree.go"
/* 右旋操作 */
func rightRotate(node *TreeNode) *TreeNode {
child := node.Left
grandChild := child.Right
// 以 child 为原点,将 node 向右旋转
child.Right = node
node.Left = grandChild
// 更新结点高度
updateHeight(node)
updateHeight(child)
// 返回旋转后子树的根结点
return child
}
```
=== "JavaScript"
```javascript title="avl_tree.js"
[class]{AVLTree}-[func]{rightRotate}
```
=== "TypeScript"
```typescript title="avl_tree.ts"
[class]{AVLTree}-[func]{rightRotate}
```
=== "C"
```c title="avl_tree.c"
```
=== "C#"
```csharp title="avl_tree.cs"
/* 右旋操作 */
TreeNode? rightRotate(TreeNode? node)
{
TreeNode? child = node.left;
TreeNode? grandChild = child?.right;
// 以 child 为原点,将 node 向右旋转
child.right = node;
node.left = grandChild;
// 更新结点高度
updateHeight(node);
updateHeight(child);
// 返回旋转后子树的根结点
return child;
}
```
=== "Swift"
```swift title="avl_tree.swift"
/* 右旋操作 */
func rightRotate(node: TreeNode?) -> TreeNode? {
let child = node?.left
let grandChild = child?.right
// 以 child 为原点,将 node 向右旋转
child?.right = node
node?.left = grandChild
// 更新结点高度
updateHeight(node: node)
updateHeight(node: child)
// 返回旋转后子树的根结点
return child
}
```
=== "Zig"
```zig title="avl_tree.zig"
```
Case 2 - 左旋
类似地,如果将取上述失衡二叉树的“镜像”,那么则需要「左旋」操作。
同理,若结点 child
本身有左子结点(记为 grandChild
),则需要在「左旋」中添加一步:将 grandChild
作为 node
的右子结点。
观察发现,「左旋」和「右旋」操作是镜像对称的,两者对应解决的两种失衡情况也是对称的。根据对称性,我们可以很方便地从「右旋」推导出「左旋」。具体地,只需将「右旋」代码中的把所有的 left
替换为 right
、所有的 right
替换为 left
,即可得到「左旋」代码。
=== "Java"
```java title="avl_tree.java"
[class]{AVLTree}-[func]{leftRotate}
```
=== "C++"
```cpp title="avl_tree.cpp"
[class]{AVLTree}-[func]{leftRotate}
```
=== "Python"
```python title="avl_tree.py"
[class]{AVLTree}-[func]{__left_rotate}
```
=== "Go"
```go title="avl_tree.go"
/* 左旋操作 */
func leftRotate(node *TreeNode) *TreeNode {
child := node.Right
grandChild := child.Left
// 以 child 为原点,将 node 向左旋转
child.Left = node
node.Right = grandChild
// 更新结点高度
updateHeight(node)
updateHeight(child)
// 返回旋转后子树的根结点
return child
}
```
=== "JavaScript"
```javascript title="avl_tree.js"
[class]{AVLTree}-[func]{leftRotate}
```
=== "TypeScript"
```typescript title="avl_tree.ts"
[class]{AVLTree}-[func]{leftRotate}
```
=== "C"
```c title="avl_tree.c"
```
=== "C#"
```csharp title="avl_tree.cs"
/* 左旋操作 */
TreeNode? leftRotate(TreeNode? node)
{
TreeNode? child = node.right;
TreeNode? grandChild = child?.left;
// 以 child 为原点,将 node 向左旋转
child.left = node;
node.right = grandChild;
// 更新结点高度
updateHeight(node);
updateHeight(child);
// 返回旋转后子树的根结点
return child;
}
```
=== "Swift"
```swift title="avl_tree.swift"
/* 左旋操作 */
func leftRotate(node: TreeNode?) -> TreeNode? {
let child = node?.right
let grandChild = child?.left
// 以 child 为原点,将 node 向左旋转
child?.left = node
node?.right = grandChild
// 更新结点高度
updateHeight(node: node)
updateHeight(node: child)
// 返回旋转后子树的根结点
return child
}
```
=== "Zig"
```zig title="avl_tree.zig"
```
Case 3 - 先左后右
对于下图的失衡结点 3 ,单一使用左旋或右旋都无法使子树恢复平衡,此时需要「先左旋后右旋」,即先对 child
执行「左旋」,再对 node
执行「右旋」。
Case 4 - 先右后左
同理,取以上失衡二叉树的镜像,则需要「先右旋后左旋」,即先对 child
执行「右旋」,然后对 node
执行「左旋」。
旋转的选择
下图描述的四种失衡情况与上述 Cases 逐个对应,分别需采用 右旋、左旋、先右后左、先左后右 的旋转操作。
具体地,在代码中使用 失衡结点的平衡因子、较高一侧子结点的平衡因子 来确定失衡结点属于上图中的哪种情况。
失衡结点的平衡因子 | 子结点的平衡因子 | 应采用的旋转方法 |
---|---|---|
>0 (即左偏树) |
\geq 0 |
右旋 |
>0 (即左偏树) |
<0 |
先左旋后右旋 |
<0 (即右偏树) |
\leq 0 |
左旋 |
<0 (即右偏树) |
>0 |
先右旋后左旋 |
为方便使用,我们将旋转操作封装成一个函数。至此,我们可以使用此函数来旋转各种失衡情况,使失衡结点重新恢复平衡。
=== "Java"
```java title="avl_tree.java"
[class]{AVLTree}-[func]{rotate}
```
=== "C++"
```cpp title="avl_tree.cpp"
[class]{AVLTree}-[func]{rotate}
```
=== "Python"
```python title="avl_tree.py"
[class]{AVLTree}-[func]{__rotate}
```
=== "Go"
```go title="avl_tree.go"
/* 执行旋转操作,使该子树重新恢复平衡 */
func rotate(node *TreeNode) *TreeNode {
// 获取结点 node 的平衡因子
// Go 推荐短变量,这里 bf 指代 balanceFactor
bf := balanceFactor(node)
// 左偏树
if bf > 1 {
if balanceFactor(node.Left) >= 0 {
// 右旋
return rightRotate(node)
} else {
// 先左旋后右旋
node.Left = leftRotate(node.Left)
return rightRotate(node)
}
}
// 右偏树
if bf < -1 {
if balanceFactor(node.Right) <= 0 {
// 左旋
return leftRotate(node)
} else {
// 先右旋后左旋
node.Right = rightRotate(node.Right)
return leftRotate(node)
}
}
// 平衡树,无需旋转,直接返回
return node
}
```
=== "JavaScript"
```javascript title="avl_tree.js"
[class]{AVLTree}-[func]{rotate}
```
=== "TypeScript"
```typescript title="avl_tree.ts"
[class]{AVLTree}-[func]{rotate}
```
=== "C"
```c title="avl_tree.c"
```
=== "C#"
```csharp title="avl_tree.cs"
/* 执行旋转操作,使该子树重新恢复平衡 */
TreeNode? rotate(TreeNode? node)
{
// 获取结点 node 的平衡因子
int balanceFactorInt = balanceFactor(node);
// 左偏树
if (balanceFactorInt > 1)
{
if (balanceFactor(node.left) >= 0)
{
// 右旋
return rightRotate(node);
}
else
{
// 先左旋后右旋
node.left = leftRotate(node?.left);
return rightRotate(node);
}
}
// 右偏树
if (balanceFactorInt < -1)
{
if (balanceFactor(node.right) <= 0)
{
// 左旋
return leftRotate(node);
}
else
{
// 先右旋后左旋
node.right = rightRotate(node?.right);
return leftRotate(node);
}
}
// 平衡树,无需旋转,直接返回
return node;
}
```
=== "Swift"
```swift title="avl_tree.swift"
/* 执行旋转操作,使该子树重新恢复平衡 */
func rotate(node: TreeNode?) -> TreeNode? {
// 获取结点 node 的平衡因子
let balanceFactor = balanceFactor(node: node)
// 左偏树
if balanceFactor > 1 {
if self.balanceFactor(node: node?.left) >= 0 {
// 右旋
return rightRotate(node: node)
} else {
// 先左旋后右旋
node?.left = leftRotate(node: node?.left)
return rightRotate(node: node)
}
}
// 右偏树
if balanceFactor < -1 {
if self.balanceFactor(node: node?.right) <= 0 {
// 左旋
return leftRotate(node: node)
} else {
// 先右旋后左旋
node?.right = rightRotate(node: node?.right)
return leftRotate(node: node)
}
}
// 平衡树,无需旋转,直接返回
return node
}
```
=== "Zig"
```zig title="avl_tree.zig"
```
7.4.3. AVL 树常用操作
插入结点
「AVL 树」的结点插入操作与「二叉搜索树」主体类似。不同的是,在插入结点后,从该结点到根结点的路径上会出现一系列「失衡结点」。所以,我们需要从该结点开始,从底至顶地执行旋转操作,使所有失衡结点恢复平衡。
=== "Java"
```java title="avl_tree.java"
[class]{AVLTree}-[func]{insert}
[class]{AVLTree}-[func]{insertHelper}
```
=== "C++"
```cpp title="avl_tree.cpp"
/* 插入结点 */
TreeNode* insert(int val) {
root = insertHelper(root, val);
return root;
}
/* 递归插入结点(辅助函数) */
TreeNode* insertHelper(TreeNode* node, int val) {
if (node == nullptr) return new TreeNode(val);
/* 1. 查找插入位置,并插入结点 */
if (val < node->val)
node->left = insertHelper(node->left, val);
else if (val > node->val)
node->right = insertHelper(node->right, val);
else
return node; // 重复结点不插入,直接返回
updateHeight(node); // 更新结点高度
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
node = rotate(node);
// 返回子树的根结点
return node;
}
```
=== "Python"
```python title="avl_tree.py"
[class]{AVLTree}-[func]{insert}
[class]{AVLTree}-[func]{__insert_helper}
```
=== "Go"
```go title="avl_tree.go"
/* 插入结点 */
func (t *avlTree) insert(val int) *TreeNode {
t.root = insertHelper(t.root, val)
return t.root
}
/* 递归插入结点(辅助函数) */
func insertHelper(node *TreeNode, val int) *TreeNode {
if node == nil {
return NewTreeNode(val)
}
/* 1. 查找插入位置,并插入结点 */
if val < node.Val {
node.Left = insertHelper(node.Left, val)
} else if val > node.Val {
node.Right = insertHelper(node.Right, val)
} else {
// 重复结点不插入,直接返回
return node
}
// 更新结点高度
updateHeight(node)
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
node = rotate(node)
// 返回子树的根结点
return node
}
```
=== "JavaScript"
```javascript title="avl_tree.js"
/* 插入结点 */
insert(val) {
this.root = this.insertHelper(this.root, val);
return this.root;
}
/* 递归插入结点(辅助函数) */
insertHelper(node, val) {
if (node === null) return new TreeNode(val);
/* 1. 查找插入位置,并插入结点 */
if (val < node.val) node.left = this.insertHelper(node.left, val);
else if (val > node.val) node.right = this.insertHelper(node.right, val);
else return node; // 重复结点不插入,直接返回
this.updateHeight(node); // 更新结点高度
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
node = this.rotate(node);
// 返回子树的根结点
return node;
}
```
=== "TypeScript"
```typescript title="avl_tree.ts"
/* 插入结点 */
insert(val: number): TreeNode {
this.root = this.insertHelper(this.root, val);
return this.root;
}
/* 递归插入结点(辅助函数) */
insertHelper(node: TreeNode, val: number): TreeNode {
if (node === null) return new TreeNode(val);
/* 1. 查找插入位置,并插入结点 */
if (val < node.val) {
node.left = this.insertHelper(node.left, val);
} else if (val > node.val) {
node.right = this.insertHelper(node.right, val);
} else {
return node; // 重复结点不插入,直接返回
}
this.updateHeight(node); // 更新结点高度
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
node = this.rotate(node);
// 返回子树的根结点
return node;
}
```
=== "C"
```c title="avl_tree.c"
```
=== "C#"
```csharp title="avl_tree.cs"
/* 插入结点 */
public TreeNode? insert(int val)
{
root = insertHelper(root, val);
return root;
}
/* 递归插入结点(辅助函数) */
private TreeNode? insertHelper(TreeNode? node, int val)
{
if (node == null) return new TreeNode(val);
/* 1. 查找插入位置,并插入结点 */
if (val < node.val)
node.left = insertHelper(node.left, val);
else if (val > node.val)
node.right = insertHelper(node.right, val);
else
return node; // 重复结点不插入,直接返回
updateHeight(node); // 更新结点高度
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
node = rotate(node);
// 返回子树的根结点
return node;
}
```
=== "Swift"
```swift title="avl_tree.swift"
/* 插入结点 */
@discardableResult
func insert(val: Int) -> TreeNode? {
root = insertHelper(node: root, val: val)
return root
}
/* 递归插入结点(辅助函数) */
func insertHelper(node: TreeNode?, val: Int) -> TreeNode? {
var node = node
if node == nil {
return TreeNode(x: val)
}
/* 1. 查找插入位置,并插入结点 */
if val < node!.val {
node?.left = insertHelper(node: node?.left, val: val)
} else if val > node!.val {
node?.right = insertHelper(node: node?.right, val: val)
} else {
return node // 重复结点不插入,直接返回
}
updateHeight(node: node) // 更新结点高度
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
node = rotate(node: node)
// 返回子树的根结点
return node
}
```
=== "Zig"
```zig title="avl_tree.zig"
```
删除结点
「AVL 树」删除结点操作与「二叉搜索树」删除结点操作总体相同。类似地,在删除结点后,也需要从底至顶地执行旋转操作,使所有失衡结点恢复平衡。
=== "Java"
```java title="avl_tree.java"
[class]{AVLTree}-[func]{remove}
[class]{AVLTree}-[func]{removeHelper}
[class]{AVLTree}-[func]{getInOrderNext}
```
=== "C++"
```cpp title="avl_tree.cpp"
/* 删除结点 */
TreeNode* remove(int val) {
root = removeHelper(root, val);
return root;
}
/* 递归删除结点(辅助函数) */
TreeNode* removeHelper(TreeNode* node, int val) {
if (node == nullptr) return nullptr;
/* 1. 查找结点,并删除之 */
if (val < node->val)
node->left = removeHelper(node->left, val);
else if (val > node->val)
node->right = removeHelper(node->right, val);
else {
if (node->left == nullptr || node->right == nullptr) {
TreeNode* child = node->left != nullptr ? node->left : node->right;
// 子结点数量 = 0 ,直接删除 node 并返回
if (child == nullptr) {
delete node;
return nullptr;
}
// 子结点数量 = 1 ,直接删除 node
else {
delete node;
node = child;
}
} else {
// 子结点数量 = 2 ,则将中序遍历的下个结点删除,并用该结点替换当前结点
TreeNode* temp = getInOrderNext(node->right);
node->right = removeHelper(node->right, temp->val);
node->val = temp->val;
}
}
updateHeight(node); // 更新结点高度
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
node = rotate(node);
// 返回子树的根结点
return node;
}
```
=== "Python"
```python title="avl_tree.py"
[class]{AVLTree}-[func]{remove}
[class]{AVLTree}-[func]{__remove_helper}
```
=== "Go"
```go title="avl_tree.go"
/* 删除结点 */
func (t *avlTree) remove(val int) *TreeNode {
root := removeHelper(t.root, val)
return root
}
/* 递归删除结点(辅助函数) */
func removeHelper(node *TreeNode, val int) *TreeNode {
if node == nil {
return nil
}
/* 1. 查找结点,并删除之 */
if val < node.Val {
node.Left = removeHelper(node.Left, val)
} else if val > node.Val {
node.Right = removeHelper(node.Right, val)
} else {
if node.Left == nil || node.Right == nil {
child := node.Left
if node.Right != nil {
child = node.Right
}
// 子结点数量 = 0 ,直接删除 node 并返回
if child == nil {
return nil
} else {
// 子结点数量 = 1 ,直接删除 node
node = child
}
} else {
// 子结点数量 = 2 ,则将中序遍历的下个结点删除,并用该结点替换当前结点
temp := getInOrderNext(node.Right)
node.Right = removeHelper(node.Right, temp.Val)
node.Val = temp.Val
}
}
// 更新结点高度
updateHeight(node)
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
node = rotate(node)
// 返回子树的根结点
return node
}
```
=== "JavaScript"
```javascript title="avl_tree.js"
/* 删除结点 */
remove(val) {
this.root = this.removeHelper(this.root, val);
return this.root;
}
/* 递归删除结点(辅助函数) */
removeHelper(node, val) {
if (node === null) return null;
/* 1. 查找结点,并删除之 */
if (val < node.val) node.left = this.removeHelper(node.left, val);
else if (val > node.val) node.right = this.removeHelper(node.right, val);
else {
if (node.left === null || node.right === null) {
const child = node.left !== null ? node.left : node.right;
// 子结点数量 = 0 ,直接删除 node 并返回
if (child === null) return null;
// 子结点数量 = 1 ,直接删除 node
else node = child;
} else {
// 子结点数量 = 2 ,则将中序遍历的下个结点删除,并用该结点替换当前结点
const temp = this.getInOrderNext(node.right);
node.right = this.removeHelper(node.right, temp.val);
node.val = temp.val;
}
}
this.updateHeight(node); // 更新结点高度
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
node = this.rotate(node);
// 返回子树的根结点
return node;
}
/* 获取中序遍历中的下一个结点(仅适用于 root 有左子结点的情况) */
getInOrderNext(node) {
if (node === null) return node;
// 循环访问左子结点,直到叶结点时为最小结点,跳出
while (node.left !== null) {
node = node.left;
}
return node;
}
/* 获取中序遍历中的下一个结点(仅适用于 root 有左子结点的情况) */
getInOrderNext(node) {
if (node === null) return node;
// 循环访问左子结点,直到叶结点时为最小结点,跳出
while (node.left !== null) {
node = node.left;
}
return node;
}
```
=== "TypeScript"
```typescript title="avl_tree.ts"
/* 删除结点 */
remove(val: number): TreeNode {
this.root = this.removeHelper(this.root, val);
return this.root;
}
/* 递归删除结点(辅助函数) */
removeHelper(node: TreeNode, val: number): TreeNode {
if (node === null) return null;
/* 1. 查找结点,并删除之 */
if (val < node.val) {
node.left = this.removeHelper(node.left, val);
} else if (val > node.val) {
node.right = this.removeHelper(node.right, val);
} else {
if (node.left === null || node.right === null) {
const child = node.left !== null ? node.left : node.right;
// 子结点数量 = 0 ,直接删除 node 并返回
if (child === null) {
return null;
} else {
// 子结点数量 = 1 ,直接删除 node
node = child;
}
} else {
// 子结点数量 = 2 ,则将中序遍历的下个结点删除,并用该结点替换当前结点
const temp = this.getInOrderNext(node.right);
node.right = this.removeHelper(node.right, temp.val);
node.val = temp.val;
}
}
this.updateHeight(node); // 更新结点高度
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
node = this.rotate(node);
// 返回子树的根结点
return node;
}
/* 获取中序遍历中的下一个结点(仅适用于 root 有左子结点的情况) */
getInOrderNext(node: TreeNode): TreeNode {
if (node === null) return node;
// 循环访问左子结点,直到叶结点时为最小结点,跳出
while (node.left !== null) {
node = node.left;
}
return node;
}
```
=== "C"
```c title="avl_tree.c"
```
=== "C#"
```csharp title="avl_tree.cs"
/* 删除结点 */
public TreeNode? remove(int val)
{
root = removeHelper(root, val);
return root;
}
/* 递归删除结点(辅助函数) */
private TreeNode? removeHelper(TreeNode? node, int val)
{
if (node == null) return null;
/* 1. 查找结点,并删除之 */
if (val < node.val)
node.left = removeHelper(node.left, val);
else if (val > node.val)
node.right = removeHelper(node.right, val);
else
{
if (node.left == null || node.right == null)
{
TreeNode? child = node.left != null ? node.left : node.right;
// 子结点数量 = 0 ,直接删除 node 并返回
if (child == null)
return null;
// 子结点数量 = 1 ,直接删除 node
else
node = child;
}
else
{
// 子结点数量 = 2 ,则将中序遍历的下个结点删除,并用该结点替换当前结点
TreeNode? temp = getInOrderNext(node.right);
node.right = removeHelper(node.right, temp.val);
node.val = temp.val;
}
}
updateHeight(node); // 更新结点高度
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
node = rotate(node);
// 返回子树的根结点
return node;
}
```
=== "Swift"
```swift title="avl_tree.swift"
/* 删除结点 */
@discardableResult
func remove(val: Int) -> TreeNode? {
root = removeHelper(node: root, val: val)
return root
}
/* 递归删除结点(辅助函数) */
func removeHelper(node: TreeNode?, val: Int) -> TreeNode? {
var node = node
if node == nil {
return nil
}
/* 1. 查找结点,并删除之 */
if val < node!.val {
node?.left = removeHelper(node: node?.left, val: val)
} else if val > node!.val {
node?.right = removeHelper(node: node?.right, val: val)
} else {
if node?.left == nil || node?.right == nil {
let child = node?.left != nil ? node?.left : node?.right
// 子结点数量 = 0 ,直接删除 node 并返回
if child == nil {
return nil
}
// 子结点数量 = 1 ,直接删除 node
else {
node = child
}
} else {
// 子结点数量 = 2 ,则将中序遍历的下个结点删除,并用该结点替换当前结点
let temp = getInOrderNext(node: node?.right)
node?.right = removeHelper(node: node?.right, val: temp!.val)
node?.val = temp!.val
}
}
updateHeight(node: node) // 更新结点高度
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
node = rotate(node: node)
// 返回子树的根结点
return node
}
```
=== "Zig"
```zig title="avl_tree.zig"
```
查找结点
「AVL 树」的结点查找操作与「二叉搜索树」一致,在此不再赘述。
7.4.4. AVL 树典型应用
- 组织存储大型数据,适用于高频查找、低频增删场景;
- 用于建立数据库中的索引系统;
!!! question "为什么红黑树比 AVL 树更受欢迎?"
红黑树的平衡条件相对宽松,因此在红黑树中插入与删除结点所需的旋转操作相对更少,结点增删操作相比 AVL 树的效率更高。