hello-algo/docs/chapter_heap/heap.md

717 lines
18 KiB
Markdown
Raw Normal View History

2023-02-28 20:03:53 +08:00
# 堆
「堆 Heap」是一种满足特定条件的完全二叉树可分为两种类型
2023-01-10 03:42:43 +08:00
- 「大顶堆 Max Heap」任意节点的值 $\geq$ 其子节点的值;
- 「小顶堆 Min Heap」任意节点的值 $\leq$ 其子节点的值;
![小顶堆与大顶堆](heap.assets/min_heap_and_max_heap.png)
2023-01-10 03:42:43 +08:00
堆作为完全二叉树的一个特例,具有以下特性:
- 最底层节点靠左填充,其他层的节点都被填满。
- 我们将二叉树的根节点称为「堆顶」,将底层最靠右的节点称为「堆底」。
- 对于大顶堆(小顶堆),堆顶元素(即根节点)的值分别是最大(最小)的。
## 堆常用操作
需要指出的是,许多编程语言提供的是「优先队列 Priority Queue」这是一种抽象数据结构定义为具有优先级排序的队列。
实际上,**堆通常用作实现优先队列,大顶堆相当于元素按从大到小顺序出队的优先队列**。从使用角度来看,我们可以将「优先队列」和「堆」看作等价的数据结构。因此,本书对两者不做特别区分,统一使用「堆」来命名。
堆的常用操作见下表,方法名需要根据编程语言来确定。
<div class="center-table" markdown>
| 方法名 | 描述 | 时间复杂度 |
| --------- | ------------------------------------------ | ----------- |
| push() | 元素入堆 | $O(\log n)$ |
| pop() | 堆顶元素出堆 | $O(\log n)$ |
| peek() | 访问堆顶元素(大 / 小顶堆分别为最大 / 小值) | $O(1)$ |
| size() | 获取堆的元素数量 | $O(1)$ |
| isEmpty() | 判断堆是否为空 | $O(1)$ |
</div>
在实际应用中,我们可以直接使用编程语言提供的堆类(或优先队列类)。
2023-01-12 04:08:45 +08:00
!!! tip
类似于排序算法中的“从小到大排列”和“从大到小排列”,我们可以通过修改 Comparator 来实现“小顶堆”与“大顶堆”之间的转换。
2023-01-12 04:08:45 +08:00
2023-01-10 03:42:43 +08:00
=== "Java"
```java title="heap.java"
/* 初始化堆 */
// 初始化小顶堆
Queue<Integer> minHeap = new PriorityQueue<>();
// 初始化大顶堆(使用 lambda 表达式修改 Comparator 即可)
Queue<Integer> maxHeap = new PriorityQueue<>((a, b) -> b - a);
2023-01-10 03:42:43 +08:00
/* 元素入堆 */
maxHeap.offer(1);
maxHeap.offer(3);
maxHeap.offer(2);
maxHeap.offer(5);
maxHeap.offer(4);
2023-01-10 03:42:43 +08:00
/* 获取堆顶元素 */
2023-01-12 04:08:45 +08:00
int peek = maxHeap.peek(); // 5
2023-01-10 03:42:43 +08:00
/* 堆顶元素出堆 */
2023-01-12 04:08:45 +08:00
// 出堆元素会形成一个从大到小的序列
peek = heap.poll(); // 5
peek = heap.poll(); // 4
peek = heap.poll(); // 3
peek = heap.poll(); // 2
peek = heap.poll(); // 1
2023-01-10 03:42:43 +08:00
/* 获取堆大小 */
int size = maxHeap.size();
/* 判断堆是否为空 */
boolean isEmpty = maxHeap.isEmpty();
/* 输入列表并建堆 */
minHeap = new PriorityQueue<>(Arrays.asList(1, 3, 2, 5, 4));
```
=== "C++"
```cpp title="heap.cpp"
/* 初始化堆 */
// 初始化小顶堆
priority_queue<int, vector<int>, greater<int>> minHeap;
// 初始化大顶堆
priority_queue<int, vector<int>, less<int>> maxHeap;
/* 元素入堆 */
maxHeap.push(1);
maxHeap.push(3);
maxHeap.push(2);
maxHeap.push(5);
maxHeap.push(4);
/* 获取堆顶元素 */
int peek = maxHeap.top(); // 5
/* 堆顶元素出堆 */
// 出堆元素会形成一个从大到小的序列
maxHeap.pop(); // 5
maxHeap.pop(); // 4
maxHeap.pop(); // 3
maxHeap.pop(); // 2
maxHeap.pop(); // 1
/* 获取堆大小 */
int size = maxHeap.size();
/* 判断堆是否为空 */
bool isEmpty = maxHeap.empty();
/* 输入列表并建堆 */
vector<int> input{1, 3, 2, 5, 4};
priority_queue<int, vector<int>, greater<int>> minHeap(input.begin(), input.end());
```
=== "Python"
```python title="heap.py"
# 初始化小顶堆
min_heap, flag = [], 1
# 初始化大顶堆
max_heap, flag = [], -1
# Python 的 heapq 模块默认实现小顶堆
# 考虑将“元素取负”后再入堆,这样就可以将大小关系颠倒,从而实现大顶堆
# 在本示例中flag = 1 时对应小顶堆flag = -1 时对应大顶堆
# 元素入堆
heapq.heappush(max_heap, flag * 1)
heapq.heappush(max_heap, flag * 3)
heapq.heappush(max_heap, flag * 2)
heapq.heappush(max_heap, flag * 5)
heapq.heappush(max_heap, flag * 4)
# 获取堆顶元素
peek: int = flag * max_heap[0] # 5
# 堆顶元素出堆
# 出堆元素会形成一个从大到小的序列
val = flag * heapq.heappop(max_heap) # 5
val = flag * heapq.heappop(max_heap) # 4
val = flag * heapq.heappop(max_heap) # 3
val = flag * heapq.heappop(max_heap) # 2
val = flag * heapq.heappop(max_heap) # 1
# 获取堆大小
size: int = len(max_heap)
# 判断堆是否为空
is_empty: bool = not max_heap
# 输入列表并建堆
min_heap: List[int] = [1, 3, 2, 5, 4]
heapq.heapify(min_heap)
```
=== "Go"
```go title="heap.go"
2023-01-13 10:25:25 +08:00
// Go 语言中可以通过实现 heap.Interface 来构建整数大顶堆
// 实现 heap.Interface 需要同时实现 sort.Interface
type intHeap []any
// Push heap.Interface 的方法,实现推入元素到堆
func (h *intHeap) Push(x any) {
// Push 和 Pop 使用 pointer receiver 作为参数
// 因为它们不仅会对切片的内容进行调整,还会修改切片的长度。
*h = append(*h, x.(int))
}
// Pop heap.Interface 的方法,实现弹出堆顶元素
func (h *intHeap) Pop() any {
// 待出堆元素存放在最后
last := (*h)[len(*h)-1]
*h = (*h)[:len(*h)-1]
return last
}
// Len sort.Interface 的方法
func (h *intHeap) Len() int {
return len(*h)
}
// Less sort.Interface 的方法
func (h *intHeap) Less(i, j int) bool {
// 如果实现小顶堆,则需要调整为小于号
return (*h)[i].(int) > (*h)[j].(int)
}
2023-01-13 10:25:25 +08:00
// Swap sort.Interface 的方法
func (h *intHeap) Swap(i, j int) {
(*h)[i], (*h)[j] = (*h)[j], (*h)[i]
}
// Top 获取堆顶元素
func (h *intHeap) Top() any {
return (*h)[0]
}
2023-01-13 17:37:24 +08:00
/* Driver Code */
func TestHeap(t *testing.T) {
/* 初始化堆 */
// 初始化大顶堆
maxHeap := &intHeap{}
heap.Init(maxHeap)
/* 元素入堆 */
// 调用 heap.Interface 的方法,来添加元素
heap.Push(maxHeap, 1)
heap.Push(maxHeap, 3)
heap.Push(maxHeap, 2)
heap.Push(maxHeap, 4)
heap.Push(maxHeap, 5)
/* 获取堆顶元素 */
top := maxHeap.Top()
fmt.Printf("堆顶元素为 %d\n", top)
/* 堆顶元素出堆 */
// 调用 heap.Interface 的方法,来移除元素
heap.Pop(maxHeap) // 5
heap.Pop(maxHeap) // 4
heap.Pop(maxHeap) // 3
heap.Pop(maxHeap) // 2
heap.Pop(maxHeap) // 1
2023-01-13 17:37:24 +08:00
/* 获取堆大小 */
size := len(*maxHeap)
fmt.Printf("堆元素数量为 %d\n", size)
/* 判断堆是否为空 */
isEmpty := len(*maxHeap) == 0
fmt.Printf("堆是否为空 %t\n", isEmpty)
}
```
=== "JavaScript"
2023-02-08 04:27:55 +08:00
```javascript title="heap.js"
// JavaScript 未提供内置 Heap 类
```
=== "TypeScript"
```typescript title="heap.ts"
// TypeScript 未提供内置 Heap 类
```
=== "C"
```c title="heap.c"
// C 未提供内置 Heap 类
```
=== "C#"
```csharp title="heap.cs"
Add C# code for the chapter Heap and Graph (#324) * add : C# heap ,graph, fix type "sift"=>"shift" * chore: rename "shift" to "sift" * add: heap,graph C# sample code ,fix format * fix md format * fix md intend foramt * fix basic_operation_of_graph.md format * fix md format * fix md format * fix indentation format * chore: fix my_heap.cs test * fix: test and doc typo * fix bug for commit 5eae708 (#317) * Add Zig code blocks. * fix: resolve build error for commit 5eae708 (#318) * Unify the function naming of queue from `offer()` to `push()` * Update TypeScript codes. * Update binary_search_tree * Update graph operations. * Fix code indentation. * Update worst_best_time_complexity, leetcode_two_sum * Update avl_tree * copy zig codes of chapter_array_and_linkedlist and chapter_computatio… (#319) * copy zig codes of chapter_array_and_linkedlist and chapter_computational_complexity to markdown files * Update time_complexity.md --------- Co-authored-by: Yudong Jin <krahets@163.com> * Fix Python code styles. Update hash_map. * chore: fix heap logic * Update graph_adjacency_matrix.cs * Update graph_adjacency_matrix.cs * Update my_heap.cs * fix: heap test * fix naming format * merge markdown * fix markdown format * Update graph_adjacency_list.cs * Update graph_adjacency_matrix.cs * Update PrintUtil.cs * Create Vertex.cs * Update heap.cs --------- Co-authored-by: zjkung1123 <zjkung1123@fugle.tw> Co-authored-by: sjinzh <99076655+sjinzh@users.noreply.github.com> Co-authored-by: Yudong Jin <krahets@163.com> Co-authored-by: nuomi1 <nuomi1@qq.com>
2023-02-15 21:24:24 +08:00
/* 初始化堆 */
// 初始化小顶堆
PriorityQueue<int, int> minHeap = new PriorityQueue<int, int>();
// 初始化大顶堆(使用 lambda 表达式修改 Comparator 即可)
PriorityQueue<int, int> maxHeap = new PriorityQueue<int, int>(Comparer<int>.Create((x, y) => y - x));
/* 元素入堆 */
maxHeap.Enqueue(1, 1);
maxHeap.Enqueue(3, 3);
maxHeap.Enqueue(2, 2);
maxHeap.Enqueue(5, 5);
maxHeap.Enqueue(4, 4);
/* 获取堆顶元素 */
int peek = maxHeap.Peek();//5
/* 堆顶元素出堆 */
// 出堆元素会形成一个从大到小的序列
peek = maxHeap.Dequeue(); // 5
peek = maxHeap.Dequeue(); // 4
peek = maxHeap.Dequeue(); // 3
peek = maxHeap.Dequeue(); // 2
peek = maxHeap.Dequeue(); // 1
/* 获取堆大小 */
int size = maxHeap.Count;
/* 判断堆是否为空 */
bool isEmpty = maxHeap.Count == 0;
/* 输入列表并建堆 */
minHeap = new PriorityQueue<int, int>(new List<(int, int)> { (1, 1), (3, 3), (2, 2), (5, 5), (4, 4), });
```
=== "Swift"
```swift title="heap.swift"
// Swift 未提供内置 Heap 类
```
2023-02-01 22:03:04 +08:00
=== "Zig"
```zig title="heap.zig"
```
## 堆的实现
下文实现的是大顶堆。若要将其转换为小顶堆,只需将所有大小逻辑判断取逆(例如,将 $\geq$ 替换为 $\leq$ )。感兴趣的读者可以自行实现。
### 堆的存储与表示
我们在二叉树章节中学习到,完全二叉树非常适合用数组来表示。由于堆正是一种完全二叉树,**我们将采用数组来存储堆**。
当使用数组表示二叉树时,元素代表节点值,索引代表节点在二叉树中的位置。**节点指针通过索引映射公式来实现**。
具体而言,给定索引 $i$ ,其左子节点索引为 $2i + 1$ ,右子节点索引为 $2i + 2$ ,父节点索引为 $(i - 1) / 2$(向下取整)。当索引越界时,表示空节点或节点不存在。
2023-01-12 04:08:45 +08:00
![堆的表示与存储](heap.assets/representation_of_heap.png)
我们可以将索引映射公式封装成函数,方便后续使用。
2023-01-10 03:42:43 +08:00
=== "Java"
2023-01-10 03:42:43 +08:00
```java title="my_heap.java"
[class]{MaxHeap}-[func]{left}
[class]{MaxHeap}-[func]{right}
[class]{MaxHeap}-[func]{parent}
2023-01-10 03:42:43 +08:00
```
=== "C++"
```cpp title="my_heap.cpp"
2023-02-08 19:45:06 +08:00
[class]{MaxHeap}-[func]{left}
2023-02-08 19:45:06 +08:00
[class]{MaxHeap}-[func]{right}
2023-02-08 19:45:06 +08:00
[class]{MaxHeap}-[func]{parent}
```
=== "Python"
```python title="my_heap.py"
[class]{MaxHeap}-[func]{left}
[class]{MaxHeap}-[func]{right}
[class]{MaxHeap}-[func]{parent}
```
=== "Go"
```go title="my_heap.go"
[class]{maxHeap}-[func]{left}
[class]{maxHeap}-[func]{right}
2023-01-13 10:25:25 +08:00
[class]{maxHeap}-[func]{parent}
```
=== "JavaScript"
2023-02-08 04:27:55 +08:00
```javascript title="my_heap.js"
2023-02-08 19:45:06 +08:00
[class]{MaxHeap}-[func]{#left}
2023-02-08 19:45:06 +08:00
[class]{MaxHeap}-[func]{#right}
2023-02-08 19:45:06 +08:00
[class]{MaxHeap}-[func]{#parent}
```
=== "TypeScript"
```typescript title="my_heap.ts"
2023-02-08 19:45:06 +08:00
[class]{MaxHeap}-[func]{left}
2023-02-08 19:45:06 +08:00
[class]{MaxHeap}-[func]{right}
2023-02-08 19:45:06 +08:00
[class]{MaxHeap}-[func]{parent}
```
=== "C"
```c title="my_heap.c"
[class]{maxHeap}-[func]{left}
[class]{maxHeap}-[func]{right}
[class]{maxHeap}-[func]{parent}
```
=== "C#"
```csharp title="my_heap.cs"
[class]{MaxHeap}-[func]{left}
[class]{MaxHeap}-[func]{right}
[class]{MaxHeap}-[func]{parent}
```
=== "Swift"
```swift title="my_heap.swift"
2023-02-08 20:30:05 +08:00
[class]{MaxHeap}-[func]{left}
2023-02-08 20:30:05 +08:00
[class]{MaxHeap}-[func]{right}
2023-02-08 20:30:05 +08:00
[class]{MaxHeap}-[func]{parent}
```
2023-02-01 22:03:04 +08:00
=== "Zig"
```zig title="my_heap.zig"
[class]{MaxHeap}-[func]{left}
[class]{MaxHeap}-[func]{right}
2023-02-01 22:03:04 +08:00
[class]{MaxHeap}-[func]{parent}
2023-02-01 22:03:04 +08:00
```
### 访问堆顶元素
堆顶元素即为二叉树的根节点,也就是列表的首个元素。
2023-01-10 03:42:43 +08:00
=== "Java"
```java title="my_heap.java"
[class]{MaxHeap}-[func]{peek}
2023-01-10 03:42:43 +08:00
```
=== "C++"
```cpp title="my_heap.cpp"
2023-02-08 04:17:26 +08:00
[class]{MaxHeap}-[func]{peek}
```
=== "Python"
```python title="my_heap.py"
[class]{MaxHeap}-[func]{peek}
```
=== "Go"
```go title="my_heap.go"
[class]{maxHeap}-[func]{peek}
```
=== "JavaScript"
2023-02-08 04:27:55 +08:00
```javascript title="my_heap.js"
2023-02-08 19:45:06 +08:00
[class]{MaxHeap}-[func]{peek}
```
=== "TypeScript"
```typescript title="my_heap.ts"
2023-02-08 19:45:06 +08:00
[class]{MaxHeap}-[func]{peek}
```
=== "C"
```c title="my_heap.c"
[class]{maxHeap}-[func]{peek}
```
=== "C#"
```csharp title="my_heap.cs"
[class]{MaxHeap}-[func]{peek}
```
=== "Swift"
```swift title="my_heap.swift"
2023-02-08 20:30:05 +08:00
[class]{MaxHeap}-[func]{peek}
```
2023-02-01 22:03:04 +08:00
=== "Zig"
```zig title="my_heap.zig"
[class]{MaxHeap}-[func]{peek}
2023-02-01 22:03:04 +08:00
```
### 元素入堆
给定元素 `val` ,我们首先将其添加到堆底。添加之后,由于 val 可能大于堆中其他元素,堆的成立条件可能已被破坏。因此,**需要修复从插入节点到根节点的路径上的各个节点**,这个操作被称为「堆化 Heapify」。
考虑从入堆节点开始,**从底至顶执行堆化**。具体来说,我们比较插入节点与其父节点的值,如果插入节点更大,则将它们交换。然后继续执行此操作,从底至顶修复堆中的各个节点,直至越过根节点或遇到无需交换的节点时结束。
2023-02-22 00:57:43 +08:00
=== "<1>"
2023-02-26 19:22:46 +08:00
![元素入堆步骤](heap.assets/heap_push_step1.png)
2023-01-12 04:08:45 +08:00
2023-02-22 00:57:43 +08:00
=== "<2>"
2023-01-31 19:11:48 +08:00
![heap_push_step2](heap.assets/heap_push_step2.png)
2023-01-12 04:08:45 +08:00
2023-02-22 00:57:43 +08:00
=== "<3>"
2023-01-31 19:11:48 +08:00
![heap_push_step3](heap.assets/heap_push_step3.png)
2023-01-12 04:08:45 +08:00
2023-02-22 00:57:43 +08:00
=== "<4>"
2023-01-31 19:11:48 +08:00
![heap_push_step4](heap.assets/heap_push_step4.png)
2023-01-12 04:08:45 +08:00
2023-02-22 00:57:43 +08:00
=== "<5>"
2023-01-31 19:11:48 +08:00
![heap_push_step5](heap.assets/heap_push_step5.png)
2023-02-22 00:57:43 +08:00
=== "<6>"
2023-01-31 19:11:48 +08:00
![heap_push_step6](heap.assets/heap_push_step6.png)
2023-01-12 04:08:45 +08:00
设节点总数为 $n$ ,则树的高度为 $O(\log n)$ 。由此可知,堆化操作的循环轮数最多为 $O(\log n)$ **元素入堆操作的时间复杂度为 $O(\log n)$** 。
2023-01-10 03:42:43 +08:00
=== "Java"
```java title="my_heap.java"
[class]{MaxHeap}-[func]{push}
[class]{MaxHeap}-[func]{siftUp}
2023-01-10 03:42:43 +08:00
```
=== "C++"
```cpp title="my_heap.cpp"
2023-02-08 04:17:26 +08:00
[class]{MaxHeap}-[func]{push}
[class]{MaxHeap}-[func]{siftUp}
```
=== "Python"
```python title="my_heap.py"
[class]{MaxHeap}-[func]{push}
[class]{MaxHeap}-[func]{sift_up}
```
=== "Go"
```go title="my_heap.go"
[class]{maxHeap}-[func]{push}
[class]{maxHeap}-[func]{siftUp}
```
=== "JavaScript"
2023-02-08 04:27:55 +08:00
```javascript title="my_heap.js"
2023-02-08 19:45:06 +08:00
[class]{MaxHeap}-[func]{push}
2023-02-08 19:45:06 +08:00
[class]{MaxHeap}-[func]{#siftUp}
```
=== "TypeScript"
```typescript title="my_heap.ts"
2023-02-08 19:45:06 +08:00
[class]{MaxHeap}-[func]{push}
2023-02-08 19:45:06 +08:00
[class]{MaxHeap}-[func]{siftUp}
```
=== "C"
```c title="my_heap.c"
[class]{maxHeap}-[func]{push}
[class]{maxHeap}-[func]{siftUp}
```
=== "C#"
```csharp title="my_heap.cs"
[class]{MaxHeap}-[func]{push}
[class]{MaxHeap}-[func]{siftUp}
```
=== "Swift"
```swift title="my_heap.swift"
2023-02-08 20:30:05 +08:00
[class]{MaxHeap}-[func]{push}
2023-02-08 20:30:05 +08:00
[class]{MaxHeap}-[func]{siftUp}
```
2023-02-01 22:03:04 +08:00
=== "Zig"
```zig title="my_heap.zig"
[class]{MaxHeap}-[func]{push}
2023-02-01 22:03:04 +08:00
[class]{MaxHeap}-[func]{siftUp}
2023-02-01 22:03:04 +08:00
```
### 堆顶元素出堆
堆顶元素是二叉树的根节点,即列表首元素。如果我们直接从列表中删除首元素,那么二叉树中所有节点的索引都会发生变化,这将使得后续使用堆化修复变得困难。为了尽量减少元素索引的变动,我们采取以下操作步骤:
1. 交换堆顶元素与堆底元素(即交换根节点与最右叶节点);
2. 交换完成后,将堆底从列表中删除(注意,由于已经交换,实际上删除的是原来的堆顶元素);
3. 从根节点开始,**从顶至底执行堆化**
顾名思义,**从顶至底堆化的操作方向与从底至顶堆化相反**,我们将根节点的值与其两个子节点的值进行比较,将最大的子节点与根节点交换;然后循环执行此操作,直到越过叶节点或遇到无需交换的节点时结束。
2023-02-22 00:57:43 +08:00
=== "<1>"
![堆顶元素出堆步骤](heap.assets/heap_pop_step1.png)
2023-01-12 04:08:45 +08:00
2023-02-22 00:57:43 +08:00
=== "<2>"
![heap_pop_step2](heap.assets/heap_pop_step2.png)
2023-01-12 04:08:45 +08:00
2023-02-22 00:57:43 +08:00
=== "<3>"
![heap_pop_step3](heap.assets/heap_pop_step3.png)
2023-01-12 04:08:45 +08:00
2023-02-22 00:57:43 +08:00
=== "<4>"
![heap_pop_step4](heap.assets/heap_pop_step4.png)
2023-01-12 04:08:45 +08:00
2023-02-22 00:57:43 +08:00
=== "<5>"
![heap_pop_step5](heap.assets/heap_pop_step5.png)
2023-01-12 04:08:45 +08:00
2023-02-22 00:57:43 +08:00
=== "<6>"
![heap_pop_step6](heap.assets/heap_pop_step6.png)
2023-01-12 04:08:45 +08:00
2023-02-22 00:57:43 +08:00
=== "<7>"
![heap_pop_step7](heap.assets/heap_pop_step7.png)
2023-01-12 04:08:45 +08:00
2023-02-22 00:57:43 +08:00
=== "<8>"
![heap_pop_step8](heap.assets/heap_pop_step8.png)
2023-01-12 04:08:45 +08:00
2023-02-22 00:57:43 +08:00
=== "<9>"
![heap_pop_step9](heap.assets/heap_pop_step9.png)
2023-01-12 04:08:45 +08:00
2023-02-22 00:57:43 +08:00
=== "<10>"
![heap_pop_step10](heap.assets/heap_pop_step10.png)
2023-01-12 04:08:45 +08:00
与元素入堆操作相似,堆顶元素出堆操作的时间复杂度也为 $O(\log n)$ 。
2023-01-10 03:42:43 +08:00
=== "Java"
```java title="my_heap.java"
[class]{MaxHeap}-[func]{pop}
[class]{MaxHeap}-[func]{siftDown}
2023-01-10 03:42:43 +08:00
```
=== "C++"
```cpp title="my_heap.cpp"
[class]{MaxHeap}-[func]{pop}
2023-02-08 04:17:26 +08:00
[class]{MaxHeap}-[func]{siftDown}
```
=== "Python"
```python title="my_heap.py"
[class]{MaxHeap}-[func]{pop}
[class]{MaxHeap}-[func]{sift_down}
```
=== "Go"
```go title="my_heap.go"
[class]{maxHeap}-[func]{pop}
2023-01-13 10:25:25 +08:00
[class]{maxHeap}-[func]{siftDown}
```
=== "JavaScript"
2023-02-08 04:27:55 +08:00
```javascript title="my_heap.js"
[class]{MaxHeap}-[func]{pop}
2023-02-08 19:45:06 +08:00
[class]{MaxHeap}-[func]{#siftDown}
```
=== "TypeScript"
```typescript title="my_heap.ts"
[class]{MaxHeap}-[func]{pop}
2023-02-08 19:45:06 +08:00
[class]{MaxHeap}-[func]{siftDown}
```
=== "C"
```c title="my_heap.c"
[class]{maxHeap}-[func]{pop}
[class]{maxHeap}-[func]{siftDown}
```
=== "C#"
```csharp title="my_heap.cs"
[class]{MaxHeap}-[func]{pop}
[class]{MaxHeap}-[func]{siftDown}
```
=== "Swift"
```swift title="my_heap.swift"
[class]{MaxHeap}-[func]{pop}
2023-02-08 20:30:05 +08:00
[class]{MaxHeap}-[func]{siftDown}
```
2023-02-01 22:03:04 +08:00
=== "Zig"
```zig title="my_heap.zig"
[class]{MaxHeap}-[func]{pop}
2023-02-01 22:03:04 +08:00
[class]{MaxHeap}-[func]{siftDown}
2023-02-01 22:03:04 +08:00
```
## 堆常见应用
- **优先队列**:堆通常作为实现优先队列的首选数据结构,其入队和出队操作的时间复杂度均为 $O(\log n)$ ,而建队操作为 $O(n)$ ,这些操作都非常高效。
2023-05-24 20:57:08 +08:00
- **堆排序**:给定一组数据,我们可以用它们建立一个堆,然后不断地执行元素出堆操作,从而得到有序数据。当然,堆排序还有一种更优雅的实现,详见后续的堆排序章节。
- **获取最大的 $k$ 个元素**:这是一个经典的算法问题,同时也是一种典型应用,例如选择热度前 10 的新闻作为微博热搜,选取销量前 10 的商品等。