Unify the comment style of python codes

This commit is contained in:
krahets 2023-04-09 05:30:02 +08:00
parent 5ddcb60825
commit 10e2180013
53 changed files with 109 additions and 106 deletions

View File

@ -64,7 +64,7 @@ def find(nums: list[int], target: int) -> int:
return -1
""" Driver Code """
"""Driver Code"""
if __name__ == "__main__":
# 初始化数组
arr: list[int] = [0] * 5

View File

@ -47,7 +47,7 @@ def find(head: ListNode, target: int) -> int:
return -1
""" Driver Code """
"""Driver Code"""
if __name__ == "__main__":
# 初始化链表
# 初始化各个节点

View File

@ -4,7 +4,7 @@ Created Time: 2022-11-25
Author: Krahets (krahets@163.com)
"""
""" Driver Code """
"""Driver Code"""
if __name__ == "__main__":
# 初始化列表
arr: list[int] = [1, 3, 2, 5, 4]

View File

@ -79,7 +79,7 @@ class MyList:
return self.__nums[: self.__size]
""" Driver Code """
"""Driver Code"""
if __name__ == "__main__":
# 初始化列表
my_list = MyList()

View File

@ -27,7 +27,7 @@ def two_sum_hash_table(nums: list[int], target: int) -> list[int]:
return []
""" Driver Code """
"""Driver Code"""
if __name__ == "__main__":
# ======= Test Case =======
nums = [2, 7, 11, 15]

View File

@ -73,7 +73,7 @@ def build_tree(n: int) -> TreeNode | None:
return root
""" Driver Code """
"""Driver Code"""
if __name__ == "__main__":
n = 5
# 常数阶

View File

@ -114,7 +114,7 @@ def factorial_recur(n: int) -> int:
return count
""" Driver Code """
"""Driver Code"""
if __name__ == "__main__":
# 可以修改 n 运行,体会一下各种复杂度的操作数量变化趋势
n = 8

View File

@ -26,7 +26,7 @@ def find_one(nums: list[int]) -> int:
return -1
""" Driver Code """
"""Driver Code"""
if __name__ == "__main__":
for i in range(10):
n: int = 100

View File

@ -69,7 +69,7 @@ class GraphAdjList:
print(f"{vertex.val}: {tmp},")
""" Driver Code """
"""Driver Code"""
if __name__ == "__main__":
# 初始化无向图
v = vals_to_vets([1, 3, 2, 5, 4])

View File

@ -84,7 +84,7 @@ class GraphAdjMat:
print_matrix(self.adj_mat)
""" Driver Code """
"""Driver Code"""
if __name__ == "__main__":
# 初始化无向图
# 请注意edges 元素代表顶点索引,即对应 vertices 元素索引

View File

@ -35,7 +35,7 @@ def graph_bfs(graph: GraphAdjList, start_vet: Vertex) -> list[Vertex]:
return res
""" Driver Code """
"""Driver Code"""
if __name__ == "__main__":
# 初始化无向图
v = vals_to_vets([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

View File

@ -34,7 +34,7 @@ def graph_dfs(graph: GraphAdjList, start_vet: Vertex) -> list[Vertex]:
return res
""" Driver Code """
"""Driver Code"""
if __name__ == "__main__":
# 初始化无向图
v = vals_to_vets([0, 1, 2, 3, 4, 5, 6])

View File

@ -77,7 +77,7 @@ class ArrayHashMap:
print(pair.key, "->", pair.val)
""" Driver Code """
"""Driver Code"""
if __name__ == "__main__":
# 初始化哈希表
mapp = ArrayHashMap()

View File

@ -9,7 +9,7 @@ import sys, os.path as osp
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from modules import *
""" Driver Code """
"""Driver Code"""
if __name__ == "__main__":
# 初始化哈希表
mapp = dict[int, str]()

View File

@ -24,7 +24,7 @@ def test_pop(heap: list, flag: int = 1) -> None:
print_heap([flag * val for val in heap])
""" Driver Code """
"""Driver Code"""
if __name__ == "__main__":
# 初始化小顶堆
min_heap, flag = [], 1
@ -35,33 +35,34 @@ if __name__ == "__main__":
# Python 的 heapq 模块默认实现小顶堆
# 考虑将“元素取负”后再入堆,这样就可以将大小关系颠倒,从而实现大顶堆
# 在本示例中flag = 1 时对应小顶堆flag = -1 时对应大顶堆
""" 元素入堆 """
# 元素入堆
test_push(max_heap, 1, flag)
test_push(max_heap, 3, flag)
test_push(max_heap, 2, flag)
test_push(max_heap, 5, flag)
test_push(max_heap, 4, flag)
""" 获取堆顶元素 """
# 获取堆顶元素
peek: int = flag * max_heap[0]
print(f"\n堆顶元素为 {peek}")
""" 堆顶元素出堆 """
# 堆顶元素出堆
test_pop(max_heap, flag)
test_pop(max_heap, flag)
test_pop(max_heap, flag)
test_pop(max_heap, flag)
test_pop(max_heap, flag)
""" 获取堆大小 """
# 获取堆大小
size: int = len(max_heap)
print(f"\n堆元素数量为 {size}")
""" 判断堆是否为空 """
# 判断堆是否为空
is_empty: bool = not max_heap
print(f"\n堆是否为空 {is_empty}")
""" 输入列表并建堆 """
# 输入列表并建堆
# 时间复杂度为 O(n) ,而非 O(nlogn)
min_heap: list[int] = [1, 3, 2, 5, 4]
heapq.heapify(min_heap)

View File

@ -105,7 +105,7 @@ class MaxHeap:
print_heap(self.max_heap)
""" Driver Code """
"""Driver Code"""
if __name__ == "__main__":
# 初始化大顶堆
max_heap = MaxHeap([9, 8, 6, 6, 7, 5, 2, 1, 4, 3, 6, 2])

View File

@ -36,7 +36,7 @@ def binary_search1(nums: list[int], target: int) -> int:
return -1 # 未找到目标元素,返回 -1
""" Driver Code """
"""Driver Code"""
if __name__ == "__main__":
target: int = 6
nums: list[int] = [1, 3, 6, 8, 12, 15, 23, 67, 70, 92]

View File

@ -26,7 +26,7 @@ def hashing_search_linkedlist(
return mapp.get(target, None)
""" Driver Code """
"""Driver Code"""
if __name__ == "__main__":
target: int = 3

View File

@ -29,7 +29,7 @@ def linear_search_linkedlist(head: ListNode, target: int) -> ListNode | None:
return None # 未找到目标节点,返回 None
""" Driver Code """
"""Driver Code"""
if __name__ == "__main__":
target: int = 3

View File

@ -33,7 +33,7 @@ def bubble_sort_with_flag(nums: list[int]) -> None:
break # 此轮冒泡未交换任何元素,直接跳出
""" Driver Code """
"""Driver Code"""
if __name__ == "__main__":
nums: list[int] = [4, 1, 3, 1, 5, 2]
bubble_sort(nums)

View File

@ -6,6 +6,7 @@ Author: Krahets (krahets@163.com)
def bucket_sort(nums: list[float]) -> None:
"""桶排序"""
# 初始化 k = n/2 个桶,预期向每个桶分配 2 个元素
k = len(nums) // 2
buckets = [[] for _ in range(k)]

View File

@ -52,7 +52,7 @@ def counting_sort(nums: list[int]) -> None:
nums[i] = res[i]
""" Driver Code """
"""Driver Code"""
if __name__ == "__main__":
nums = [1, 0, 1, 2, 0, 4, 0, 2, 2, 4]

View File

@ -18,7 +18,7 @@ def insertion_sort(nums: list[int]) -> None:
nums[j + 1] = base # 2. 将 base 赋值到正确位置
""" Driver Code """
"""Driver Code"""
if __name__ == "__main__":
nums: list[int] = [4, 1, 3, 1, 5, 2]
insertion_sort(nums)

View File

@ -49,7 +49,7 @@ def merge_sort(nums: list[int], left: int, right: int) -> None:
merge(nums, left, mid, right)
""" Driver Code """
"""Driver Code"""
if __name__ == "__main__":
nums: list[int] = [7, 3, 2, 6, 0, 1, 5, 4]
merge_sort(nums, 0, len(nums) - 1)

View File

@ -112,7 +112,7 @@ class QuickSortTailCall:
right = pivot - 1 # 剩余待排序区间为 [left, pivot - 1]
""" Driver Code """
"""Driver Code"""
if __name__ == "__main__":
# 快速排序
nums: list[int] = [2, 4, 1, 0, 3, 5]

View File

@ -50,7 +50,7 @@ def radix_sort(nums: list[int]) -> None:
exp *= 10
""" Driver Code """
"""Driver Code"""
if __name__ == "__main__":
# 基数排序
nums = [

View File

@ -91,7 +91,7 @@ class ArrayDeque:
return res
""" Driver Code """
"""Driver Code"""
if __name__ == "__main__":
# 初始化双向队列
deque = ArrayDeque(10)

View File

@ -59,7 +59,7 @@ class ArrayQueue:
return res
""" Driver Code """
"""Driver Code"""
if __name__ == "__main__":
# 初始化队列
queue = ArrayQueue(10)

View File

@ -39,7 +39,7 @@ class ArrayStack:
return self.__stack
""" Driver Code """
"""Driver Code"""
if __name__ == "__main__":
# 初始化栈
stack = ArrayStack()

View File

@ -6,7 +6,7 @@ Author: Peng Chen (pengchzn@gmail.com)
from collections import deque
""" Driver Code """
"""Driver Code"""
if __name__ == "__main__":
# 初始化双向队列
deq: deque[int] = deque()

View File

@ -112,7 +112,7 @@ class LinkedListDeque:
return res
""" Driver Code """
"""Driver Code"""
if __name__ == "__main__":
# 初始化双向队列
deque = LinkedListDeque()

View File

@ -66,7 +66,7 @@ class LinkedListQueue:
return queue
""" Driver Code """
"""Driver Code"""
if __name__ == "__main__":
# 初始化队列
queue = LinkedListQueue()

View File

@ -58,7 +58,7 @@ class LinkedListStack:
return arr
""" Driver Code """
"""Driver Code"""
if __name__ == "__main__":
# 初始化栈
stack = LinkedListStack()

View File

@ -6,7 +6,7 @@ Author: Peng Chen (pengchzn@gmail.com)
from collections import deque
""" Driver Code """
"""Driver Code"""
if __name__ == "__main__":
# 初始化队列
# 在 Python 中,我们一般将双向队列类 deque 看作队列使用

View File

@ -4,7 +4,7 @@ Created Time: 2022-11-29
Author: Peng Chen (pengchzn@gmail.com)
"""
""" Driver Code """
"""Driver Code"""
if __name__ == "__main__":
# 初始化栈
# Python 没有内置的栈类,可以把 list 当作栈来使用

View File

@ -173,7 +173,7 @@ class AVLTree:
return cur
""" Driver Code """
"""Driver Code"""
if __name__ == "__main__":
def test_insert(tree: AVLTree, val: int):

View File

@ -136,7 +136,7 @@ class BinarySearchTree:
return root
""" Driver Code """
"""Driver Code"""
if __name__ == "__main__":
# 初始化二叉搜索树
nums = list(range(1, 16)) # [1, 2, ..., 15]

View File

@ -10,7 +10,7 @@ sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from modules import *
""" Driver Code """
"""Driver Code"""
if __name__ == "__main__":
# 初始化二叉树
# 初始化节点

View File

@ -28,7 +28,7 @@ def level_order(root: TreeNode | None) -> list[int]:
return res
""" Driver Code """
"""Driver Code"""
if __name__ == "__main__":
# 初始化二叉树
# 这里借助了一个从数组直接生成二叉树的函数

View File

@ -40,7 +40,7 @@ def post_order(root: TreeNode | None) -> None:
res.append(root.val)
""" Driver Code """
"""Driver Code"""
if __name__ == "__main__":
# 初始化二叉树
# 这里借助了一个从数组直接生成二叉树的函数

View File

@ -29,7 +29,7 @@
=== "Python"
```python title="array.py"
""" 初始化数组 """
# 初始化数组
arr: List[int] = [0] * 5 # [ 0, 0, 0, 0, 0 ]
nums: List[int] = [1, 3, 2, 5, 4]
```
@ -293,7 +293,7 @@ elementAddr = firtstElementAddr + elementLength * elementIndex
[class]{}-[func]{insert}
```
删除元素也类似,如果我们想要删除索引 $i$ 处的元素,则需要把索引 $i$ 之后的元素都向前移动一位。值得注意的是,删除元素后,原先末尾的元素变得“无意义”了,我们无需特意去修改它。
删除元素也类似,如果我们想要删除索引 $i$ 处的元素,则需要把索引 $i$ 之后的元素都向前移动一位。值得注意的是,删除元素后,原先末尾的元素变得“无意义”了,我们无需特意去修改它。
![数组删除元素](array.assets/array_remove_element.png)

View File

@ -1,10 +1,10 @@
# 链表
内存空间是所有程序的公共资源,排除已被占用的内存空间,空闲内存空间通常散落在内存各处。在上一节中,我们提到存储数组的内存空间必须是连续的,而当我们需要申请一个非常大的数组时,空闲内存中可能没有这么大的连续空间。
内存空间是所有程序的公共资源,排除已被占用的内存空间,空闲内存空间通常散落在内存各处。在上一节中,我们提到存储数组的内存空间必须是连续的,而当我们需要申请一个非常大的数组时,空闲内存中可能没有这么大的连续空间。与数组相比,链表更具灵活性,它可以被存储在非连续的内存空间中。
与数组相比,链表更具灵活性,因为它可以存储在非连续的内存空间。「链表 Linked List」是一种线性数据结构其每个元素都是一个节点对象各个节点之间通过指针连接从当前节点通过指针可以访问到下一个节点。由于指针记录了下个节点的内存地址因此无需保证内存地址的连续性从而可以将各个节点分散存储在内存各处。
「链表 Linked List」是一种线性数据结构其每个元素都是一个节点对象各个节点之间通过指针连接从当前节点通过指针可以访问到下一个节点。**由于指针记录了下个节点的内存地址,因此无需保证内存地址的连续性**,从而可以将各个节点分散存储在内存各处。
链表「节点 Node」包含两项数据一是节点「值 Value」二是指向下一节点的「指针 Pointer」或称指向下一节点的「引用 Reference」。
链表「节点 Node」包含两项数据一是节点「值 Value」二是指向下一节点的「指针 Pointer」或称「引用 Reference」。
![链表定义与存储方式](linked_list.assets/linkedlist_definition.png)
@ -33,8 +33,8 @@
=== "Python"
```python title=""
""" 链表节点类 """
class ListNode:
"""链表节点类"""
def __init__(self, val: int):
self.val: int = val # 节点值
self.next: Optional[ListNode] = None # 指向下一节点的指针(引用)
@ -201,7 +201,7 @@
=== "Python"
```python title="linked_list.py"
""" 初始化链表 1 -> 3 -> 2 -> 5 -> 4 """
# 初始化链表 1 -> 3 -> 2 -> 5 -> 4
# 初始化各个节点
n0 = ListNode(1)
n1 = ListNode(3)
@ -629,8 +629,8 @@
=== "Python"
```python title=""
""" 双向链表节点类 """
class ListNode:
"""双向链表节点类"""
def __init__(self, val: int):
self.val: int = val # 节点值
self.next: Optional[ListNode] = None # 指向后继节点的指针(引用)

View File

@ -33,7 +33,7 @@
=== "Python"
```python title="list.py"
""" 初始化列表 """
# 初始化列表
# 无初始值
list1: List[int] = []
# 有初始值
@ -131,10 +131,10 @@
=== "Python"
```python title="list.py"
""" 访问元素 """
# 访问元素
num: int = list[1] # 访问索引 1 处的元素
""" 更新元素 """
# 更新元素
list[1] = 0 # 将索引 1 处的元素更新为 0
```
@ -249,20 +249,20 @@
=== "Python"
```python title="list.py"
""" 清空列表 """
# 清空列表
list.clear()
""" 尾部添加元素 """
# 尾部添加元素
list.append(1)
list.append(3)
list.append(2)
list.append(5)
list.append(4)
""" 中间插入元素 """
# 中间插入元素
list.insert(3, 6) # 在索引 3 处插入数字 6
""" 删除元素 """
# 删除元素
list.pop(3) # 删除索引 3 处的元素
```
@ -429,12 +429,12 @@
=== "Python"
```python title="list.py"
""" 通过索引遍历列表 """
# 通过索引遍历列表
count: int = 0
for i in range(len(list)):
count += 1
""" 直接遍历列表元素 """
# 直接遍历列表元素
count: int = 0
for n in list:
count += 1
@ -567,7 +567,7 @@
=== "Python"
```python title="list.py"
""" 拼接两个列表 """
# 拼接两个列表
list1: List[int] = [6, 8, 7, 10, 9]
list += list1 # 将列表 list1 拼接到 list 之后
```
@ -647,7 +647,7 @@
=== "Python"
```python title="list.py"
""" 排序列表 """
# 排序列表
list.sort() # 排序后,列表元素从小到大排列
```

View File

@ -75,14 +75,14 @@
=== "Python"
```python title=""
""" 类 """
class Node:
"""类"""
def __init__(self, x: int):
self.val: int = x # 节点值
self.next: Optional[Node] = None # 指向下一节点的指针(引用)
""" 函数 """
def function() -> int:
"""函数"""
# do something...
return 0
@ -413,13 +413,13 @@
# do something
return 0
""" 循环 O(1) """
def loop(n: int) -> None:
"""循环 O(1)"""
for _ in range(n):
function()
""" 递归 O(n) """
def recur(n: int) -> int:
"""递归 O(n)"""
if n == 1: return
return recur(n - 1)
```

View File

@ -132,7 +132,7 @@ $$
=== "Python"
```python title=""
""" Python 的 list 可以自由存储各种基本数据类型和对象 """
# Python 的 list 可以自由存储各种基本数据类型和对象
list = [0, 0.0, 'a', False]
```

View File

@ -80,10 +80,10 @@
=== "Python"
```python title="hash_map.py"
""" 初始化哈希表 """
# 初始化哈希表
mapp: Dict = {}
""" 添加操作 """
# 添加操作
# 在哈希表中添加键值对 (key, value)
mapp[12836] = "小哈"
mapp[15937] = "小啰"
@ -91,11 +91,11 @@
mapp[13276] = "小法"
mapp[10583] = "小鸭"
""" 查询操作 """
# 查询操作
# 向哈希表输入键 key ,得到值 value
name: str = mapp[15937]
""" 删除操作 """
# 删除操作
# 在哈希表中删除键值对 (key, value)
mapp.pop(10583)
```
@ -271,7 +271,7 @@
=== "Python"
```python title="hash_map.py"
""" 遍历哈希表 """
# 遍历哈希表
# 遍历键值对 key->value
for key, value in mapp.items():
print(key, "->", value)

View File

@ -125,17 +125,18 @@
# Python 的 heapq 模块默认实现小顶堆
# 考虑将“元素取负”后再入堆,这样就可以将大小关系颠倒,从而实现大顶堆
# 在本示例中flag = 1 时对应小顶堆flag = -1 时对应大顶堆
""" 元素入堆 """
# 元素入堆
heapq.heappush(max_heap, flag * 1)
heapq.heappush(max_heap, flag * 3)
heapq.heappush(max_heap, flag * 2)
heapq.heappush(max_heap, flag * 5)
heapq.heappush(max_heap, flag * 4)
""" 获取堆顶元素 """
# 获取堆顶元素
peek: int = flag * max_heap[0] # 5
""" 堆顶元素出堆 """
# 堆顶元素出堆
# 出堆元素会形成一个从大到小的序列
val = flag * heapq.heappop(max_heap) # 5
val = flag * heapq.heappop(max_heap) # 4
@ -143,13 +144,13 @@
val = flag * heapq.heappop(max_heap) # 2
val = flag * heapq.heappop(max_heap) # 1
""" 获取堆大小 """
# 获取堆大小
size: int = len(max_heap)
""" 判断堆是否为空 """
# 判断堆是否为空
is_empty: bool = not max_heap
""" 输入列表并建堆 """
# 输入列表并建堆
min_heap: List[int] = [1, 3, 2, 5, 4]
heapq.heapify(min_heap)
```

View File

@ -55,7 +55,7 @@
=== "Python"
```python title=""
""" 标题注释,用于标注函数、类、测试样例等 """
"""标题注释,用于标注函数、类、测试样例等"""
# 内容注释,用于详解代码

View File

@ -82,28 +82,28 @@
=== "Python"
```python title="deque.py"
""" 初始化双向队列 """
# 初始化双向队列
deque: Deque[int] = collections.deque()
""" 元素入队 """
# 元素入队
deque.append(2) # 添加至队尾
deque.append(5)
deque.append(4)
deque.appendleft(3) # 添加至队首
deque.appendleft(1)
""" 访问元素 """
# 访问元素
front: int = deque[0] # 队首元素
rear: int = deque[-1] # 队尾元素
""" 元素出队 """
# 元素出队
pop_front: int = deque.popleft() # 队首元素出队
pop_rear: int = deque.pop() # 队尾元素出队
""" 获取双向队列的长度 """
# 获取双向队列的长度
size: int = len(deque)
""" 判断双向队列是否为空 """
# 判断双向队列是否为空
is_empty: bool = len(deque) == 0
```

View File

@ -1,6 +1,6 @@
# 队列
「队列 Queue」是一种遵循「先入先出 first in, first out」数据操作规则的线性数据结构。顾名思义,队列模拟的是排队现象,即外面的人不断加入队列尾部,而处于队列头部的人不断地离开。
「队列 Queue」是一种遵循先入先出first in, first out数据操作规则的线性数据结构。顾名思义,队列模拟的是排队现象,即外面的人不断加入队列尾部,而处于队列头部的人不断地离开。
我们将队列头部称为「队首」,队列尾部称为「队尾」,将把元素加入队尾的操作称为「入队」,删除队首元素的操作称为「出队」。
@ -77,28 +77,28 @@
=== "Python"
```python title="queue.py"
""" 初始化队列 """
# 初始化队列
# 在 Python 中,我们一般将双向队列类 deque 看作队列使用
# 虽然 queue.Queue() 是纯正的队列类,但不太好用,因此不建议
que: Deque[int] = collections.deque()
""" 元素入队 """
# 元素入队
que.append(1)
que.append(3)
que.append(2)
que.append(5)
que.append(4)
""" 访问队首元素 """
# 访问队首元素
front: int = que[0];
""" 元素出队 """
# 元素出队
pop: int = que.popleft()
""" 获取队列的长度 """
# 获取队列的长度
size: int = len(que)
""" 判断队列是否为空 """
# 判断队列是否为空
is_empty: bool = len(que) == 0
```

View File

@ -1,6 +1,6 @@
# 栈
「栈 Stack」是一种遵循「先入后出 first in, last out」数据操作规则的线性数据结构。我们可以将栈类比为放在桌面上的一摞盘子,如果需要拿出底部的盘子,则需要先将上面的盘子依次取出。
「栈 Stack」是一种遵循先入后出first in, last out数据操作规则的线性数据结构。我们可以将栈类比为放在桌面上的一摞盘子,如果需要拿出底部的盘子,则需要先将上面的盘子依次取出。
“盘子”是一种形象比喻,我们将盘子替换为任意一种元素(例如整数、字符、对象等),就得到了栈数据结构。
@ -79,27 +79,27 @@
=== "Python"
```python title="stack.py"
""" 初始化栈 """
# 初始化栈
# Python 没有内置的栈类,可以把 List 当作栈来使用
stack: List[int] = []
""" 元素入栈 """
# 元素入栈
stack.append(1)
stack.append(3)
stack.append(2)
stack.append(5)
stack.append(4)
""" 访问栈顶元素 """
# 访问栈顶元素
peek: int = stack[-1]
""" 元素出栈 """
# 元素出栈
pop: int = stack.pop()
""" 获取栈的长度 """
# 获取栈的长度
size: int = len(stack)
""" 判断是否为空 """
# 判断是否为空
is_empty: bool = len(stack) == 0
```

View File

@ -52,8 +52,8 @@ G. M. Adelson-Velsky 和 E. M. Landis 在其 1962 年发表的论文 "An algorit
=== "Python"
```python title=""
""" AVL 树节点类 """
class TreeNode:
"""AVL 树节点类"""
def __init__(self, val: int):
self.val: int = val # 节点值
self.height: int = 0 # 节点高度

View File

@ -29,8 +29,8 @@
=== "Python"
```python title=""
""" 二叉树节点类 """
class TreeNode:
"""二叉树节点类"""
def __init__(self, val: int):
self.val: int = val # 节点值
self.left: Optional[TreeNode] = None # 左子节点指针
@ -188,7 +188,7 @@
=== "Python"
```python title="binary_tree.py"
""" 初始化二叉树 """
# 初始化二叉树
# 初始化节点
n1 = TreeNode(val=1)
n2 = TreeNode(val=2)
@ -328,7 +328,7 @@
=== "Python"
```python title="binary_tree.py"
""" 插入与删除节点 """
# 插入与删除节点
p = TreeNode(0)
# 在 n1 -> n2 中间插入节点 P
n1.left = p
@ -502,7 +502,7 @@
=== "Python"
```python title=""
""" 二叉树的数组表示 """
# 二叉树的数组表示
# 直接使用 None 来表示空位
tree = [1, 2, 3, 4, None, 6, 7, 8, 9, None, None, 12, None, None, 15]
```