hello-algo/codes/c/chapter_tree/binary_search_tree.c

186 lines
5.0 KiB
C
Raw Normal View History

2023-01-11 01:56:08 +08:00
/**
* File: binary_search_tree.c
* Created Time: 2023-01-11
* Author: Reanon (793584285@qq.com)
*/
#include "../utils/common.h"
2023-01-11 01:56:08 +08:00
2023-01-15 21:49:22 +08:00
/* 二叉搜索树 */
struct binarySearchTree {
TreeNode *root;
};
typedef struct binarySearchTree binarySearchTree;
2023-04-17 22:15:06 +08:00
/* 比较器:从小到大排序 */
2023-01-15 21:49:22 +08:00
int sortIntHelper(const void *a, const void *b) {
return (*(int *)a - *(int *)b);
2023-01-15 21:49:22 +08:00
}
/* 构建二叉搜索树 */
TreeNode *buildTree(int nums[], int i, int j) {
if (i > j) {
return NULL;
}
// 将数组中间节点作为根节点
2023-01-15 21:49:22 +08:00
int mid = (i + j) / 2;
TreeNode *root = newTreeNode(nums[mid]);
// 递归建立左子树和右子树
root->left = buildTree(nums, i, mid - 1);
root->right = buildTree(nums, mid + 1, j);
return root;
}
binarySearchTree *newBinarySearchTree(int nums[], int size) {
binarySearchTree *bst = (binarySearchTree *)malloc(sizeof(binarySearchTree));
2023-01-15 21:49:22 +08:00
TreeNode *root;
// 从小到大排序数组
qsort(nums, size, sizeof(int), sortIntHelper);
// 构建二叉搜索树
root = buildTree(nums, 0, size - 1);
bst->root = root;
return bst;
}
/* 获取二叉树根节点 */
2023-01-15 21:49:22 +08:00
TreeNode *getRoot(binarySearchTree *bst) {
return bst->root;
}
/* 查找节点 */
2023-01-15 21:49:22 +08:00
TreeNode *search(binarySearchTree *bst, int num) {
TreeNode *cur = bst->root;
// 循环查找,越过叶节点后跳出
2023-01-15 21:49:22 +08:00
while (cur != NULL) {
2023-01-16 10:35:59 +08:00
if (cur->val < num) {
// 目标节点在 cur 的右子树中
2023-01-16 10:35:59 +08:00
cur = cur->right;
} else if (cur->val > num) {
// 目标节点在 cur 的左子树中
2023-01-16 10:35:59 +08:00
cur = cur->left;
} else {
// 找到目标节点,跳出循环
2023-01-16 10:35:59 +08:00
break;
}
2023-01-15 21:49:22 +08:00
}
// 返回目标节点
2023-01-15 21:49:22 +08:00
return cur;
}
/* 插入节点 */
void insert(binarySearchTree *bst, int num) {
2023-08-31 02:31:31 +08:00
// 若树为空,则初始化根节点
if (bst->root == NULL) {
bst->root = newTreeNode(num);
return;
2023-08-31 02:31:31 +08:00
}
2023-01-15 21:49:22 +08:00
TreeNode *cur = bst->root, *pre = NULL;
// 循环查找,越过叶节点后跳出
2023-01-15 21:49:22 +08:00
while (cur != NULL) {
// 找到重复节点,直接返回
2023-01-16 10:35:59 +08:00
if (cur->val == num) {
return;
2023-01-16 10:35:59 +08:00
}
2023-01-15 21:49:22 +08:00
pre = cur;
2023-01-16 10:35:59 +08:00
if (cur->val < num) {
// 插入位置在 cur 的右子树中
2023-01-16 10:35:59 +08:00
cur = cur->right;
} else {
// 插入位置在 cur 的左子树中
2023-01-16 10:35:59 +08:00
cur = cur->left;
}
2023-01-15 21:49:22 +08:00
}
// 插入节点
2023-01-15 21:49:22 +08:00
TreeNode *node = newTreeNode(num);
2023-01-16 10:35:59 +08:00
if (pre->val < num) {
pre->right = node;
} else {
pre->left = node;
}
2023-01-15 21:49:22 +08:00
}
/* 删除节点 */
2023-01-16 10:35:59 +08:00
// 由于引入了 stdio.h ,此处无法使用 remove 关键词
void removeNode(binarySearchTree *bst, int num) {
2023-01-15 21:49:22 +08:00
// 若树为空,直接提前返回
if (bst->root == NULL)
return;
2023-01-15 21:49:22 +08:00
TreeNode *cur = bst->root, *pre = NULL;
// 循环查找,越过叶节点后跳出
2023-01-15 21:49:22 +08:00
while (cur != NULL) {
// 找到待删除节点,跳出循环
if (cur->val == num)
break;
2023-01-15 21:49:22 +08:00
pre = cur;
2023-01-16 10:35:59 +08:00
if (cur->val < num) {
// 待删除节点在 root 的右子树中
2023-01-16 10:35:59 +08:00
cur = cur->right;
} else {
// 待删除节点在 root 的左子树中
2023-01-16 10:35:59 +08:00
cur = cur->left;
}
2023-01-15 21:49:22 +08:00
}
// 若无待删除节点,则直接返回
if (cur == NULL)
return;
// 判断待删除节点是否存在子节点
2023-01-15 21:49:22 +08:00
if (cur->left == NULL || cur->right == NULL) {
/* 子节点数量 = 0 or 1 */
// 当子节点数量 = 0 / 1 时, child = nullptr / 该子节点
2023-01-15 21:49:22 +08:00
TreeNode *child = cur->left != NULL ? cur->left : cur->right;
// 删除节点 cur
2023-01-16 10:35:59 +08:00
if (pre->left == cur) {
pre->left = child;
} else {
pre->right = child;
}
} else {
/* 子节点数量 = 2 */
// 获取中序遍历中 cur 的下一个节点
TreeNode *tmp = cur->right;
while (tmp->left != NULL) {
tmp = tmp->left;
}
int tmpVal = tmp->val;
// 递归删除节点 tmp
removeNode(bst, tmp->val);
// 用 tmp 覆盖 cur
cur->val = tmpVal;
2023-01-15 21:49:22 +08:00
}
}
/* Driver Code */
int main() {
/* 初始化二叉搜索树 */
int nums[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
binarySearchTree *bst = newBinarySearchTree(nums, sizeof(nums) / sizeof(int));
printf("初始化的二叉树为\n");
printTree(getRoot(bst));
/* 查找节点 */
2023-01-15 21:49:22 +08:00
TreeNode *node = search(bst, 7);
printf("查找到的节点对象的节点值 = %d\n", node->val);
2023-01-15 21:49:22 +08:00
/* 插入节点 */
2023-01-15 21:49:22 +08:00
insert(bst, 16);
printf("插入节点 16 后,二叉树为\n");
2023-01-15 21:49:22 +08:00
printTree(getRoot(bst));
/* 删除节点 */
2023-01-15 21:49:22 +08:00
removeNode(bst, 1);
printf("删除节点 1 后,二叉树为\n");
2023-01-15 21:49:22 +08:00
printTree(getRoot(bst));
removeNode(bst, 2);
printf("删除节点 2 后,二叉树为\n");
2023-01-15 21:49:22 +08:00
printTree(getRoot(bst));
removeNode(bst, 4);
printf("删除节点 4 后,二叉树为\n");
2023-01-15 21:49:22 +08:00
printTree(getRoot(bst));
// 释放内存
free(bst);
return 0;
}