wiseflow/core/utils/general_utils.py
2024-12-05 12:11:28 +08:00

108 lines
3.8 KiB
Python

from urllib.parse import urlparse
import os
import re
# import jieba
from loguru import logger
def isURL(string):
if string.startswith("www."):
string = f"https://{string}"
result = urlparse(string)
return result.scheme != '' and result.netloc != ''
def extract_urls(text):
# Regular expression to match http, https, and www URLs
url_pattern = re.compile(r'((?:https?://|www\.)[-A-Za-z0-9+&@#/%?=~_|!:,.;]*[-A-Za-z0-9+&@#/%=~_|])')
urls = re.findall(url_pattern, text)
# urls = {quote(url.rstrip('/'), safe='/:?=&') for url in urls}
cleaned_urls = set()
for url in urls:
if url.startswith("www."):
url = f"https://{url}"
parsed_url = urlparse(url)
if not parsed_url.netloc:
continue
# remove hash fragment
if not parsed_url.scheme:
# just try https
cleaned_urls.add(f"https://{parsed_url.netloc}{parsed_url.path}{parsed_url.params}{parsed_url.query}")
else:
cleaned_urls.add(
f"{parsed_url.scheme}://{parsed_url.netloc}{parsed_url.path}{parsed_url.params}{parsed_url.query}")
return cleaned_urls
def isChinesePunctuation(char):
# Define the Unicode encoding range for Chinese punctuation marks
chinese_punctuations = set(range(0x3000, 0x303F)) | set(range(0xFF00, 0xFFEF))
# Check if the character is within the above range
return ord(char) in chinese_punctuations
def is_chinese(string):
"""
:param string: {str} The string to be detected
:return: {bool} Returns True if most are Chinese, False otherwise
"""
pattern = re.compile(r'[^\u4e00-\u9fa5]')
non_chinese_count = len(pattern.findall(string))
# It is easy to misjudge strictly according to the number of bytes less than half.
# English words account for a large number of bytes, and there are punctuation marks, etc
return (non_chinese_count/len(string)) < 0.68
def extract_and_convert_dates(input_string):
# 定义匹配不同日期格式的正则表达式
if not isinstance(input_string, str):
return None
patterns = [
r'(\d{4})-(\d{2})-(\d{2})', # YYYY-MM-DD
r'(\d{4})/(\d{2})/(\d{2})', # YYYY/MM/DD
r'(\d{4})\.(\d{2})\.(\d{2})', # YYYY.MM.DD
r'(\d{4})\\(\d{2})\\(\d{2})', # YYYY\MM\DD
r'(\d{4})(\d{2})(\d{2})' # YYYYMMDD
]
matches = []
for pattern in patterns:
matches = re.findall(pattern, input_string)
if matches:
break
if matches:
return ''.join(matches[0])
return ''
def get_logger(logger_name: str, logger_file_path: str):
level = 'DEBUG' if os.environ.get("VERBOSE", "").lower() in ["true", "1"] else 'INFO'
logger_file = os.path.join(logger_file_path, f"{logger_name}.log")
if not os.path.exists(logger_file_path):
os.makedirs(logger_file_path)
logger.add(logger_file, level=level, backtrace=True, diagnose=True, rotation="50 MB")
return logger
"""
def compare_phrase_with_list(target_phrase, phrase_list, threshold):
Compare the similarity of a target phrase to each phrase in the phrase list.
: Param target_phrase: target phrase (str)
: Param phrase_list: list of str
: param threshold: similarity threshold (float)
: Return: list of phrases that satisfy the similarity condition (list of str)
if not target_phrase:
return [] # The target phrase is empty, and the empty list is returned directly.
# Preprocessing: Segmentation of the target phrase and each phrase in the phrase list
target_tokens = set(jieba.lcut(target_phrase))
tokenized_phrases = {phrase: set(jieba.lcut(phrase)) for phrase in phrase_list}
similar_phrases = [phrase for phrase, tokens in tokenized_phrases.items()
if len(target_tokens & tokens) / min(len(target_tokens), len(tokens)) > threshold]
return similar_phrases
"""