mirror of
https://github.com/krahets/hello-algo.git
synced 2025-01-24 23:38:45 +08:00
f68bbb0d59
* Revised the book * Update the book with the second revised edition * Revise base on the manuscript of the first edition
153 lines
3.6 KiB
C
153 lines
3.6 KiB
C
/**
|
|
* File: my_heap.c
|
|
* Created Time: 2023-01-15
|
|
* Author: Reanon (793584285@qq.com)
|
|
*/
|
|
|
|
#include "../utils/common.h"
|
|
|
|
#define MAX_SIZE 5000
|
|
|
|
/* 大顶堆 */
|
|
typedef struct {
|
|
// size 代表的是实际元素的个数
|
|
int size;
|
|
// 使用预先分配内存的数组,避免扩容
|
|
int data[MAX_SIZE];
|
|
} MaxHeap;
|
|
|
|
// 函数声明
|
|
void siftDown(MaxHeap *maxHeap, int i);
|
|
void siftUp(MaxHeap *maxHeap, int i);
|
|
int parent(MaxHeap *maxHeap, int i);
|
|
|
|
/* 构造函数,根据切片建堆 */
|
|
MaxHeap *newMaxHeap(int nums[], int size) {
|
|
// 所有元素入堆
|
|
MaxHeap *maxHeap = (MaxHeap *)malloc(sizeof(MaxHeap));
|
|
maxHeap->size = size;
|
|
memcpy(maxHeap->data, nums, size * sizeof(int));
|
|
for (int i = parent(maxHeap, size - 1); i >= 0; i--) {
|
|
// 堆化除叶节点以外的其他所有节点
|
|
siftDown(maxHeap, i);
|
|
}
|
|
return maxHeap;
|
|
}
|
|
|
|
/* 析构函数 */
|
|
void delMaxHeap(MaxHeap *maxHeap) {
|
|
// 释放内存
|
|
free(maxHeap);
|
|
}
|
|
|
|
/* 获取左子节点的索引 */
|
|
int left(MaxHeap *maxHeap, int i) {
|
|
return 2 * i + 1;
|
|
}
|
|
|
|
/* 获取右子节点的索引 */
|
|
int right(MaxHeap *maxHeap, int i) {
|
|
return 2 * i + 2;
|
|
}
|
|
|
|
/* 获取父节点的索引 */
|
|
int parent(MaxHeap *maxHeap, int i) {
|
|
return (i - 1) / 2;
|
|
}
|
|
|
|
/* 交换元素 */
|
|
void swap(MaxHeap *maxHeap, int i, int j) {
|
|
int temp = maxHeap->data[i];
|
|
maxHeap->data[i] = maxHeap->data[j];
|
|
maxHeap->data[j] = temp;
|
|
}
|
|
|
|
/* 获取堆大小 */
|
|
int size(MaxHeap *maxHeap) {
|
|
return maxHeap->size;
|
|
}
|
|
|
|
/* 判断堆是否为空 */
|
|
int isEmpty(MaxHeap *maxHeap) {
|
|
return maxHeap->size == 0;
|
|
}
|
|
|
|
/* 访问堆顶元素 */
|
|
int peek(MaxHeap *maxHeap) {
|
|
return maxHeap->data[0];
|
|
}
|
|
|
|
/* 元素入堆 */
|
|
void push(MaxHeap *maxHeap, int val) {
|
|
// 默认情况下,不应该添加这么多节点
|
|
if (maxHeap->size == MAX_SIZE) {
|
|
printf("heap is full!");
|
|
return;
|
|
}
|
|
// 添加节点
|
|
maxHeap->data[maxHeap->size] = val;
|
|
maxHeap->size++;
|
|
|
|
// 从底至顶堆化
|
|
siftUp(maxHeap, maxHeap->size - 1);
|
|
}
|
|
|
|
/* 元素出堆 */
|
|
int pop(MaxHeap *maxHeap) {
|
|
// 判空处理
|
|
if (isEmpty(maxHeap)) {
|
|
printf("heap is empty!");
|
|
return INT_MAX;
|
|
}
|
|
// 交换根节点与最右叶节点(交换首元素与尾元素)
|
|
swap(maxHeap, 0, size(maxHeap) - 1);
|
|
// 删除节点
|
|
int val = maxHeap->data[maxHeap->size - 1];
|
|
maxHeap->size--;
|
|
// 从顶至底堆化
|
|
siftDown(maxHeap, 0);
|
|
|
|
// 返回堆顶元素
|
|
return val;
|
|
}
|
|
|
|
/* 从节点 i 开始,从顶至底堆化 */
|
|
void siftDown(MaxHeap *maxHeap, int i) {
|
|
while (true) {
|
|
// 判断节点 i, l, r 中值最大的节点,记为 max
|
|
int l = left(maxHeap, i);
|
|
int r = right(maxHeap, i);
|
|
int max = i;
|
|
if (l < size(maxHeap) && maxHeap->data[l] > maxHeap->data[max]) {
|
|
max = l;
|
|
}
|
|
if (r < size(maxHeap) && maxHeap->data[r] > maxHeap->data[max]) {
|
|
max = r;
|
|
}
|
|
// 若节点 i 最大或索引 l, r 越界,则无须继续堆化,跳出
|
|
if (max == i) {
|
|
break;
|
|
}
|
|
// 交换两节点
|
|
swap(maxHeap, i, max);
|
|
// 循环向下堆化
|
|
i = max;
|
|
}
|
|
}
|
|
|
|
/* 从节点 i 开始,从底至顶堆化 */
|
|
void siftUp(MaxHeap *maxHeap, int i) {
|
|
while (true) {
|
|
// 获取节点 i 的父节点
|
|
int p = parent(maxHeap, i);
|
|
// 当“越过根节点”或“节点无须修复”时,结束堆化
|
|
if (p < 0 || maxHeap->data[i] <= maxHeap->data[p]) {
|
|
break;
|
|
}
|
|
// 交换两节点
|
|
swap(maxHeap, i, p);
|
|
// 循环向上堆化
|
|
i = p;
|
|
}
|
|
}
|