mirror of
https://github.com/krahets/hello-algo.git
synced 2025-01-27 17:38:40 +08:00
ec25970e8e
Add build script for Zig.
179 lines
4.5 KiB
Zig
179 lines
4.5 KiB
Zig
// File: time_complexity.zig
|
|
// Created Time: 2022-12-28
|
|
// Author: sjinzh (sjinzh@gmail.com)
|
|
|
|
const std = @import("std");
|
|
|
|
// 常数阶
|
|
fn constant(n: i32) i32 {
|
|
_ = n;
|
|
var count: i32 = 0;
|
|
const size: i32 = 100_000;
|
|
var i: i32 = 0;
|
|
while(i<size) : (i += 1) {
|
|
count += 1;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
// 线性阶
|
|
fn linear(n: i32) i32 {
|
|
var count: i32 = 0;
|
|
var i: i32 = 0;
|
|
while (i < n) : (i += 1) {
|
|
count += 1;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
// 线性阶(遍历数组)
|
|
fn arrayTraversal(nums: []i32) i32 {
|
|
var count: i32 = 0;
|
|
// 循环次数与数组长度成正比
|
|
for (nums) |_| {
|
|
count += 1;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
// 平方阶
|
|
fn quadratic(n: i32) i32 {
|
|
var count: i32 = 0;
|
|
var i: i32 = 0;
|
|
// 循环次数与数组长度成平方关系
|
|
while (i < n) : (i += 1) {
|
|
var j: i32 = 0;
|
|
while (j < n) : (j += 1) {
|
|
count += 1;
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
// 平方阶(冒泡排序)
|
|
fn bubbleSort(nums: []i32) i32 {
|
|
var count: i32 = 0; // 计数器
|
|
// 外循环:待排序元素数量为 n-1, n-2, ..., 1
|
|
var i: i32 = @intCast(i32, nums.len ) - 1;
|
|
while (i > 0) : (i -= 1) {
|
|
var j: usize = 0;
|
|
// 内循环:冒泡操作
|
|
while (j < i) : (j += 1) {
|
|
if (nums[j] > nums[j + 1]) {
|
|
// 交换 nums[j] 与 nums[j + 1]
|
|
var tmp = nums[j];
|
|
nums[j] = nums[j + 1];
|
|
nums[j + 1] = tmp;
|
|
count += 3; // 元素交换包含 3 个单元操作
|
|
}
|
|
}
|
|
}
|
|
return count;
|
|
}
|
|
|
|
// 指数阶(循环实现)
|
|
fn exponential(n: i32) i32 {
|
|
var count: i32 = 0;
|
|
var bas: i32 = 1;
|
|
var i: i32 = 0;
|
|
// cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
|
|
while (i < n) : (i += 1) {
|
|
var j: i32 = 0;
|
|
while (j < bas) : (j += 1) {
|
|
count += 1;
|
|
}
|
|
bas *= 2;
|
|
}
|
|
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
|
|
return count;
|
|
}
|
|
|
|
// 指数阶(递归实现)
|
|
fn expRecur(n: i32) i32 {
|
|
if (n == 1) return 1;
|
|
return expRecur(n - 1) + expRecur(n - 1) + 1;
|
|
}
|
|
|
|
// 对数阶(循环实现)
|
|
fn logarithmic(n: f32) i32 {
|
|
var count: i32 = 0;
|
|
var n_var = n;
|
|
while (n_var > 1)
|
|
{
|
|
n_var = n_var / 2;
|
|
count +=1;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
// 对数阶(递归实现)
|
|
fn logRecur(n: f32) i32 {
|
|
if (n <= 1) return 0;
|
|
return logRecur(n / 2) + 1;
|
|
}
|
|
|
|
// 线性对数阶
|
|
fn linearLogRecur(n: f32) i32 {
|
|
if (n <= 1) return 1;
|
|
var count: i32 = linearLogRecur(n / 2) +
|
|
linearLogRecur(n / 2);
|
|
var i: f32 = 0;
|
|
while (i < n) : (i += 1) {
|
|
count += 1;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
// 阶乘阶(递归实现)
|
|
fn factorialRecur(n: i32) i32 {
|
|
if (n == 0) return 1;
|
|
var count: i32 = 0;
|
|
var i: i32 = 0;
|
|
// 从 1 个分裂出 n 个
|
|
while (i < n) : (i += 1) {
|
|
count += factorialRecur(n - 1);
|
|
}
|
|
return count;
|
|
}
|
|
|
|
// Driver Code
|
|
pub fn main() !void {
|
|
// 可以修改 n 运行,体会一下各种复杂度的操作数量变化趋势
|
|
const n: i32 = 8;
|
|
std.debug.print("输入数据大小 n = {}\n", .{n});
|
|
|
|
var count = constant(n);
|
|
std.debug.print("常数阶的计算操作数量 = {}\n", .{count});
|
|
|
|
count = linear(n);
|
|
std.debug.print("线性阶的计算操作数量 = {}\n", .{count});
|
|
var nums = [_]i32{0}**n;
|
|
count = arrayTraversal(&nums);
|
|
std.debug.print("线性阶(遍历数组)的计算操作数量 = {}\n", .{count});
|
|
|
|
count = quadratic(n);
|
|
std.debug.print("平方阶的计算操作数量 = {}\n", .{count});
|
|
for (nums) |*num, i| {
|
|
num.* = n - @intCast(i32, i); // [n,n-1,...,2,1]
|
|
}
|
|
count = bubbleSort(&nums);
|
|
std.debug.print("平方阶(冒泡排序)的计算操作数量 = {}\n", .{count});
|
|
|
|
count = exponential(n);
|
|
std.debug.print("指数阶(循环实现)的计算操作数量 = {}\n", .{count});
|
|
count = expRecur(n);
|
|
std.debug.print("指数阶(递归实现)的计算操作数量 = {}\n", .{count});
|
|
|
|
count = logarithmic(@as(f32, n));
|
|
std.debug.print("对数阶(循环实现)的计算操作数量 = {}\n", .{count});
|
|
count = logRecur(@as(f32, n));
|
|
std.debug.print("对数阶(递归实现)的计算操作数量 = {}\n", .{count});
|
|
|
|
count = linearLogRecur(@as(f32, n));
|
|
std.debug.print("线性对数阶(递归实现)的计算操作数量 = {}\n", .{count});
|
|
|
|
count = factorialRecur(n);
|
|
std.debug.print("阶乘阶(递归实现)的计算操作数量 = {}\n", .{count});
|
|
}
|
|
|