hello-algo/codes/zig/chapter_tree/avl_tree.zig

249 lines
9.1 KiB
Zig
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// File: avl_tree.zig
// Created Time: 2023-01-15
// Author: sjinzh (sjinzh@gmail.com)
const std = @import("std");
const inc = @import("include");
// AVL 树
pub fn AVLTree(comptime T: type) type {
return struct {
const Self = @This();
root: ?*inc.TreeNode(T) = null, // 根节点
mem_arena: ?std.heap.ArenaAllocator = null,
mem_allocator: std.mem.Allocator = undefined, // 内存分配器
// 构造方法
pub fn init(self: *Self, allocator: std.mem.Allocator) void {
if (self.mem_arena == null) {
self.mem_arena = std.heap.ArenaAllocator.init(allocator);
self.mem_allocator = self.mem_arena.?.allocator();
}
}
// 析构方法
pub fn deinit(self: *Self) void {
if (self.mem_arena == null) return;
self.mem_arena.?.deinit();
}
// 获取节点高度
fn height(self: *Self, node: ?*inc.TreeNode(T)) i32 {
_ = self;
// 空节点高度为 -1 ,叶节点高度为 0
return if (node == null) -1 else node.?.height;
}
// 更新节点高度
fn updateHeight(self: *Self, node: ?*inc.TreeNode(T)) void {
// 节点高度等于最高子树高度 + 1
node.?.height = std.math.max(self.height(node.?.left), self.height(node.?.right)) + 1;
}
// 获取平衡因子
fn balanceFactor(self: *Self, node: ?*inc.TreeNode(T)) i32 {
// 空节点平衡因子为 0
if (node == null) return 0;
// 节点平衡因子 = 左子树高度 - 右子树高度
return self.height(node.?.left) - self.height(node.?.right);
}
// 右旋操作
fn rightRotate(self: *Self, node: ?*inc.TreeNode(T)) ?*inc.TreeNode(T) {
var child = node.?.left;
var grandChild = child.?.right;
// 以 child 为原点,将 node 向右旋转
child.?.right = node;
node.?.left = grandChild;
// 更新节点高度
self.updateHeight(node);
self.updateHeight(child);
// 返回旋转后子树的根节点
return child;
}
// 左旋操作
fn leftRotate(self: *Self, node: ?*inc.TreeNode(T)) ?*inc.TreeNode(T) {
var child = node.?.right;
var grandChild = child.?.left;
// 以 child 为原点,将 node 向左旋转
child.?.left = node;
node.?.right = grandChild;
// 更新节点高度
self.updateHeight(node);
self.updateHeight(child);
// 返回旋转后子树的根节点
return child;
}
// 执行旋转操作,使该子树重新恢复平衡
fn rotate(self: *Self, node: ?*inc.TreeNode(T)) ?*inc.TreeNode(T) {
// 获取节点 node 的平衡因子
var balance_factor = self.balanceFactor(node);
// 左偏树
if (balance_factor > 1) {
if (self.balanceFactor(node.?.left) >= 0) {
// 右旋
return self.rightRotate(node);
} else {
// 先左旋后右旋
node.?.left = self.leftRotate(node.?.left);
return self.rightRotate(node);
}
}
// 右偏树
if (balance_factor < -1) {
if (self.balanceFactor(node.?.right) <= 0) {
// 左旋
return self.leftRotate(node);
} else {
// 先右旋后左旋
node.?.right = self.rightRotate(node.?.right);
return self.leftRotate(node);
}
}
// 平衡树,无需旋转,直接返回
return node;
}
// 插入节点
fn insert(self: *Self, val: T) void {
self.root = try self.insertHelper(self.root, val);
}
// 递归插入节点(辅助方法)
fn insertHelper(self: *Self, node_: ?*inc.TreeNode(T), val: T) !?*inc.TreeNode(T) {
var node = node_;
if (node == null) {
var tmp_node = try self.mem_allocator.create(inc.TreeNode(T));
tmp_node.init(val);
return tmp_node;
}
// 1. 查找插入位置,并插入节点
if (val < node.?.val) {
node.?.left = try self.insertHelper(node.?.left, val);
} else if (val > node.?.val) {
node.?.right = try self.insertHelper(node.?.right, val);
} else {
return node; // 重复节点不插入,直接返回
}
self.updateHeight(node); // 更新节点高度
// 2. 执行旋转操作,使该子树重新恢复平衡
node = self.rotate(node);
// 返回子树的根节点
return node;
}
// 删除节点
fn remove(self: *Self, val: T) void {
self.root = self.removeHelper(self.root, val);
}
// 递归删除节点(辅助方法)
fn removeHelper(self: *Self, node_: ?*inc.TreeNode(T), val: T) ?*inc.TreeNode(T) {
var node = node_;
if (node == null) return null;
// 1. 查找节点,并删除之
if (val < node.?.val) {
node.?.left = self.removeHelper(node.?.left, val);
} else if (val > node.?.val) {
node.?.right = self.removeHelper(node.?.right, val);
} else {
if (node.?.left == null or node.?.right == null) {
var child = if (node.?.left != null) node.?.left else node.?.right;
// 子节点数量 = 0 ,直接删除 node 并返回
if (child == null) {
return null;
// 子节点数量 = 1 ,直接删除 node
} else {
node = child;
}
} else {
// 子节点数量 = 2 ,则将中序遍历的下个节点删除,并用该节点替换当前节点
var temp = node.?.right;
while (temp.?.left != null) {
temp = temp.?.left;
}
node.?.right = self.removeHelper(node.?.right, temp.?.val);
node.?.val = temp.?.val;
}
}
self.updateHeight(node); // 更新节点高度
// 2. 执行旋转操作,使该子树重新恢复平衡
node = self.rotate(node);
// 返回子树的根节点
return node;
}
// 查找节点
fn search(self: *Self, val: T) ?*inc.TreeNode(T) {
var cur = self.root;
// 循环查找,越过叶节点后跳出
while (cur != null) {
// 目标节点在 cur 的右子树中
if (cur.?.val < val) {
cur = cur.?.right;
// 目标节点在 cur 的左子树中
} else if (cur.?.val > val) {
cur = cur.?.left;
// 找到目标节点,跳出循环
} else {
break;
}
}
// 返回目标节点
return cur;
}
};
}
pub fn testInsert(comptime T: type, tree_: *AVLTree(T), val: T) !void {
var tree = tree_;
_ = try tree.insert(val);
std.debug.print("\n插入节点 {} 后AVL 树为\n", .{val});
try inc.PrintUtil.printTree(tree.root, null, false);
}
pub fn testRemove(comptime T: type, tree_: *AVLTree(T), val: T) void {
var tree = tree_;
_ = tree.remove(val);
std.debug.print("\n删除节点 {} 后AVL 树为\n", .{val});
try inc.PrintUtil.printTree(tree.root, null, false);
}
// Driver Code
pub fn main() !void {
// 初始化空 AVL 树
var avl_tree = AVLTree(i32){};
avl_tree.init(std.heap.page_allocator);
defer avl_tree.deinit();
// 插入节点
// 请关注插入节点后AVL 树是如何保持平衡的
try testInsert(i32, &avl_tree, 1);
try testInsert(i32, &avl_tree, 2);
try testInsert(i32, &avl_tree, 3);
try testInsert(i32, &avl_tree, 4);
try testInsert(i32, &avl_tree, 5);
try testInsert(i32, &avl_tree, 8);
try testInsert(i32, &avl_tree, 7);
try testInsert(i32, &avl_tree, 9);
try testInsert(i32, &avl_tree, 10);
try testInsert(i32, &avl_tree, 6);
// 插入重复节点
try testInsert(i32, &avl_tree, 7);
// 删除节点
// 请关注删除节点后AVL 树是如何保持平衡的
testRemove(i32, &avl_tree, 8); // 删除度为 0 的节点
testRemove(i32, &avl_tree, 5); // 删除度为 1 的节点
testRemove(i32, &avl_tree, 4); // 删除度为 2 的节点
// 查找节点
var node = avl_tree.search(7).?;
std.debug.print("\n查找到的节点对象为 {any},节点值 = {}\n", .{node, node.val});
_ = try std.io.getStdIn().reader().readByte();
}