hello-algo/codes/zig/chapter_heap/my_heap.zig
2023-05-25 20:25:19 +08:00

187 lines
6.1 KiB
Zig

// File: my_heap.zig
// Created Time: 2023-01-14
// Author: sjinzh (sjinzh@gmail.com)
const std = @import("std");
const inc = @import("include");
// 堆类简易实现
pub fn MaxHeap(comptime T: type) type {
return struct {
const Self = @This();
max_heap: ?std.ArrayList(T) = null, // 使用列表而非数组,这样无需考虑扩容问题
// 构造方法,根据输入列表建堆
pub fn init(self: *Self, allocator: std.mem.Allocator, nums: []const T) !void {
if (self.max_heap != null) return;
self.max_heap = std.ArrayList(T).init(allocator);
// 将列表元素原封不动添加进堆
try self.max_heap.?.appendSlice(nums);
// 堆化除叶节点以外的其他所有节点
var i: usize = parent(self.size() - 1) + 1;
while (i > 0) : (i -= 1) {
try self.siftDown(i - 1);
}
}
// 析构方法,释放内存
pub fn deinit(self: *Self) void {
if (self.max_heap != null) self.max_heap.?.deinit();
}
// 获取左子节点索引
fn left(i: usize) usize {
return 2 * i + 1;
}
// 获取右子节点索引
fn right(i: usize) usize {
return 2 * i + 2;
}
// 获取父节点索引
fn parent(i: usize) usize {
// return (i - 1) / 2; // 向下整除
return @divFloor(i - 1, 2);
}
// 交换元素
fn swap(self: *Self, i: usize, j: usize) !void {
var tmp = self.max_heap.?.items[i];
try self.max_heap.?.replaceRange(i, 1, &[_]T{self.max_heap.?.items[j]});
try self.max_heap.?.replaceRange(j, 1, &[_]T{tmp});
}
// 获取堆大小
pub fn size(self: *Self) usize {
return self.max_heap.?.items.len;
}
// 判断堆是否为空
pub fn isEmpty(self: *Self) bool {
return self.size() == 0;
}
// 访问堆顶元素
pub fn peek(self: *Self) T {
return self.max_heap.?.items[0];
}
// 元素入堆
pub fn push(self: *Self, val: T) !void {
// 添加节点
try self.max_heap.?.append(val);
// 从底至顶堆化
try self.siftUp(self.size() - 1);
}
// 从节点 i 开始,从底至顶堆化
fn siftUp(self: *Self, i_: usize) !void {
var i = i_;
while (true) {
// 获取节点 i 的父节点
var p = parent(i);
// 当“越过根节点”或“节点无需修复”时,结束堆化
if (p < 0 or self.max_heap.?.items[i] <= self.max_heap.?.items[p]) break;
// 交换两节点
try self.swap(i, p);
// 循环向上堆化
i = p;
}
}
// 元素出堆
pub fn pop(self: *Self) !T {
// 判断处理
if (self.isEmpty()) unreachable;
// 交换根节点与最右叶节点(即交换首元素与尾元素)
try self.swap(0, self.size() - 1);
// 删除节点
var val = self.max_heap.?.pop();
// 从顶至底堆化
try self.siftDown(0);
// 返回堆顶元素
return val;
}
// 从节点 i 开始,从顶至底堆化
fn siftDown(self: *Self, i_: usize) !void {
var i = i_;
while (true) {
// 判断节点 i, l, r 中值最大的节点,记为 ma
var l = left(i);
var r = right(i);
var ma = i;
if (l < self.size() and self.max_heap.?.items[l] > self.max_heap.?.items[ma]) ma = l;
if (r < self.size() and self.max_heap.?.items[r] > self.max_heap.?.items[ma]) ma = r;
// 若节点 i 最大或索引 l, r 越界,则无需继续堆化,跳出
if (ma == i) break;
// 交换两节点
try self.swap(i, ma);
// 循环向下堆化
i = ma;
}
}
fn lessThan(context: void, a: T, b: T) std.math.Order {
_ = context;
return std.math.order(a, b);
}
fn greaterThan(context: void, a: T, b: T) std.math.Order {
return lessThan(context, a, b).invert();
}
// 打印堆(二叉树)
pub fn print(self: *Self, mem_allocator: std.mem.Allocator) !void {
const PQgt = std.PriorityQueue(T, void, greaterThan);
var queue = PQgt.init(std.heap.page_allocator, {});
defer queue.deinit();
try queue.addSlice(self.max_heap.?.items);
try inc.PrintUtil.printHeap(T, mem_allocator, queue);
}
};
}
// Driver Code
pub fn main() !void {
// 初始化内存分配器
var mem_arena = std.heap.ArenaAllocator.init(std.heap.page_allocator);
defer mem_arena.deinit();
const mem_allocator = mem_arena.allocator();
// 初始化大顶堆
var max_heap = MaxHeap(i32){};
try max_heap.init(std.heap.page_allocator, &[_]i32{ 9, 8, 6, 6, 7, 5, 2, 1, 4, 3, 6, 2 });
defer max_heap.deinit();
std.debug.print("\n输入列表并建堆后\n", .{});
try max_heap.print(mem_allocator);
// 获取堆顶元素
var peek = max_heap.peek();
std.debug.print("\n堆顶元素为 {}\n", .{peek});
// 元素入堆
const val = 7;
try max_heap.push(val);
std.debug.print("\n元素 {} 入堆后\n", .{val});
try max_heap.print(mem_allocator);
// 堆顶元素出堆
peek = try max_heap.pop();
std.debug.print("\n堆顶元素 {} 出堆后\n", .{peek});
try max_heap.print(mem_allocator);
// 获取堆的大小
var size = max_heap.size();
std.debug.print("\n堆元素数量为 {}", .{size});
// 判断堆是否为空
var is_empty = max_heap.isEmpty();
std.debug.print("\n堆是否为空 {}\n", .{is_empty});
_ = try std.io.getStdIn().reader().readByte();
}