hello-algo/codes/c/chapter_computational_complexity/time_complexity.c
krahets 932d14644d Polish the content
Polish the chapter preface, introduction and complexity anlysis
2023-08-08 23:16:33 +08:00

180 lines
4.4 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/**
* File: time_complexity.c
* Created Time: 2023-01-03
* Author: sjinzh (sjinzh@gmail.com)
*/
#include "../utils/common.h"
/* 常数阶 */
int constant(int n) {
int count = 0;
int size = 100000;
int i = 0;
for (int i = 0; i < size; i++) {
count++;
}
return count;
}
/* 线性阶 */
int linear(int n) {
int count = 0;
for (int i = 0; i < n; i++) {
count++;
}
return count;
}
/* 线性阶(遍历数组) */
int arrayTraversal(int *nums, int n) {
int count = 0;
// 循环次数与数组长度成正比
for (int i = 0; i < n; i++) {
count++;
}
return count;
}
/* 平方阶 */
int quadratic(int n) {
int count = 0;
// 循环次数与数组长度成平方关系
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
count++;
}
}
return count;
}
/* 平方阶(冒泡排序) */
int bubbleSort(int *nums, int n) {
int count = 0; // 计数器
// 外循环:未排序区间为 [0, i]
for (int i = n - 1; i > 0; i--) {
// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
for (int j = 0; j < i; j++) {
if (nums[j] > nums[j + 1]) {
// 交换 nums[j] 与 nums[j + 1]
int tmp = nums[j];
nums[j] = nums[j + 1];
nums[j + 1] = tmp;
count += 3; // 元素交换包含 3 个单元操作
}
}
}
return count;
}
/* 指数阶(循环实现) */
int exponential(int n) {
int count = 0;
int bas = 1;
// 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
for (int i = 0; i < n; i++) {
for (int j = 0; j < bas; j++) {
count++;
}
bas *= 2;
}
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
return count;
}
/* 指数阶(递归实现) */
int expRecur(int n) {
if (n == 1)
return 1;
return expRecur(n - 1) + expRecur(n - 1) + 1;
}
/* 对数阶(循环实现) */
int logarithmic(float n) {
int count = 0;
while (n > 1) {
n = n / 2;
count++;
}
return count;
}
/* 对数阶(递归实现) */
int logRecur(float n) {
if (n <= 1)
return 0;
return logRecur(n / 2) + 1;
}
/* 线性对数阶 */
int linearLogRecur(float n) {
if (n <= 1)
return 1;
int count = linearLogRecur(n / 2) + linearLogRecur(n / 2);
for (int i = 0; i < n; i++) {
count++;
}
return count;
}
/* 阶乘阶(递归实现) */
int factorialRecur(int n) {
if (n == 0)
return 1;
int count = 0;
for (int i = 0; i < n; i++) {
count += factorialRecur(n - 1);
}
return count;
}
/* Driver Code */
int main(int argc, char *argv[]) {
// 可以修改 n 运行,体会一下各种复杂度的操作数量变化趋势
int n = 8;
printf("输入数据大小 n = %d\n", n);
int count = constant(n);
printf("常数阶的计算操作数量 = %d\n", count);
count = linear(n);
printf("线性阶的计算操作数量 = %d\n", count);
// 分配堆区内存创建一维可变长数组数组中元素数量为n元素类型为int
int *nums = (int *)malloc(n * sizeof(int));
count = arrayTraversal(nums, n);
printf("线性阶(遍历数组)的计算操作数量 = %d\n", count);
count = quadratic(n);
printf("平方阶的计算操作数量 = %d\n", count);
for (int i = 0; i < n; i++) {
nums[i] = n - i; // [n,n-1,...,2,1]
}
count = bubbleSort(nums, n);
printf("平方阶(冒泡排序)的计算操作数量 = %d\n", count);
count = exponential(n);
printf("指数阶(循环实现)的计算操作数量 = %d\n", count);
count = expRecur(n);
printf("指数阶(递归实现)的计算操作数量 = %d\n", count);
count = logarithmic(n);
printf("对数阶(循环实现)的计算操作数量 = %d\n", count);
count = logRecur(n);
printf("对数阶(递归实现)的计算操作数量 = %d\n", count);
count = linearLogRecur(n);
printf("线性对数阶(递归实现)的计算操作数量 = %d\n", count);
count = factorialRecur(n);
printf("阶乘阶(递归实现)的计算操作数量 = %d\n", count);
// 释放堆区内存
if (nums != NULL) {
free(nums);
nums = NULL;
}
getchar();
return 0;
}