hello-algo/codes/python/chapter_computational_complexity/space_complexity.py
2023-03-12 18:49:52 +08:00

79 lines
1.8 KiB
Python

"""
File: space_complexity.py
Created Time: 2022-11-25
Author: Krahets (krahets@163.com)
"""
import sys, os.path as osp
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from modules import *
def function() -> int:
""" 函数 """
# do something
return 0
def constant(n: int) -> None:
""" 常数阶 """
# 常量、变量、对象占用 O(1) 空间
a: int = 0
nums: List[int] = [0] * 10000
node = ListNode(0)
# 循环中的变量占用 O(1) 空间
for _ in range(n):
c: int = 0
# 循环中的函数占用 O(1) 空间
for _ in range(n):
function()
def linear(n: int) -> None:
""" 线性阶 """
# 长度为 n 的列表占用 O(n) 空间
nums: List[int] = [0] * n
# 长度为 n 的哈希表占用 O(n) 空间
mapp: Dict = {}
for i in range(n):
mapp[i] = str(i)
def linear_recur(n: int) -> None:
""" 线性阶(递归实现) """
print("递归 n =", n)
if n == 1: return
linear_recur(n - 1)
def quadratic(n: int) -> None:
""" 平方阶 """
# 二维列表占用 O(n^2) 空间
num_matrix: List[List[int]] = [[0] * n for _ in range(n)]
def quadratic_recur(n: int) -> int:
""" 平方阶(递归实现) """
if n <= 0: return 0
# 数组 nums 长度为 n, n-1, ..., 2, 1
nums: List[int] = [0] * n
return quadratic_recur(n - 1)
def build_tree(n: int) -> Optional[TreeNode]:
""" 指数阶(建立满二叉树) """
if n == 0: return None
root = TreeNode(0)
root.left = build_tree(n - 1)
root.right = build_tree(n - 1)
return root
""" Driver Code """
if __name__ == "__main__":
n = 5
# 常数阶
constant(n)
# 线性阶
linear(n)
linear_recur(n)
# 平方阶
quadratic(n)
quadratic_recur(n)
# 指数阶
root: Optional[TreeNode] = build_tree(n)
print_tree(root)