hello-algo/codes/cpp/chapter_computational_complexity/time_complexity.cpp
Yudong Jin 3ea91bda99
fix: Use int instead of float for the example code of log time complexity (#1164)
* Use int instead of float for the example code of log time complexity

* Bug fixes

* Bug fixes
2024-03-23 02:17:48 +08:00

169 lines
4.1 KiB
C++

/**
* File: time_complexity.cpp
* Created Time: 2022-11-25
* Author: krahets (krahets@163.com)
*/
#include "../utils/common.hpp"
/* 常数阶 */
int constant(int n) {
int count = 0;
int size = 100000;
for (int i = 0; i < size; i++)
count++;
return count;
}
/* 线性阶 */
int linear(int n) {
int count = 0;
for (int i = 0; i < n; i++)
count++;
return count;
}
/* 线性阶(遍历数组) */
int arrayTraversal(vector<int> &nums) {
int count = 0;
// 循环次数与数组长度成正比
for (int num : nums) {
count++;
}
return count;
}
/* 平方阶 */
int quadratic(int n) {
int count = 0;
// 循环次数与数据大小 n 成平方关系
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
count++;
}
}
return count;
}
/* 平方阶(冒泡排序) */
int bubbleSort(vector<int> &nums) {
int count = 0; // 计数器
// 外循环:未排序区间为 [0, i]
for (int i = nums.size() - 1; i > 0; i--) {
// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
for (int j = 0; j < i; j++) {
if (nums[j] > nums[j + 1]) {
// 交换 nums[j] 与 nums[j + 1]
int tmp = nums[j];
nums[j] = nums[j + 1];
nums[j + 1] = tmp;
count += 3; // 元素交换包含 3 个单元操作
}
}
}
return count;
}
/* 指数阶(循环实现) */
int exponential(int n) {
int count = 0, base = 1;
// 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
for (int i = 0; i < n; i++) {
for (int j = 0; j < base; j++) {
count++;
}
base *= 2;
}
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
return count;
}
/* 指数阶(递归实现) */
int expRecur(int n) {
if (n == 1)
return 1;
return expRecur(n - 1) + expRecur(n - 1) + 1;
}
/* 对数阶(循环实现) */
int logarithmic(int n) {
int count = 0;
while (n > 1) {
n = n / 2;
count++;
}
return count;
}
/* 对数阶(递归实现) */
int logRecur(int n) {
if (n <= 1)
return 0;
return logRecur(n / 2) + 1;
}
/* 线性对数阶 */
int linearLogRecur(int n) {
if (n <= 1)
return 1;
int count = linearLogRecur(n / 2) + linearLogRecur(n / 2);
for (int i = 0; i < n; i++) {
count++;
}
return count;
}
/* 阶乘阶(递归实现) */
int factorialRecur(int n) {
if (n == 0)
return 1;
int count = 0;
// 从 1 个分裂出 n 个
for (int i = 0; i < n; i++) {
count += factorialRecur(n - 1);
}
return count;
}
/* Driver Code */
int main() {
// 可以修改 n 运行,体会一下各种复杂度的操作数量变化趋势
int n = 8;
cout << "输入数据大小 n = " << n << endl;
int count = constant(n);
cout << "常数阶的操作数量 = " << count << endl;
count = linear(n);
cout << "线性阶的操作数量 = " << count << endl;
vector<int> arr(n);
count = arrayTraversal(arr);
cout << "线性阶(遍历数组)的操作数量 = " << count << endl;
count = quadratic(n);
cout << "平方阶的操作数量 = " << count << endl;
vector<int> nums(n);
for (int i = 0; i < n; i++)
nums[i] = n - i; // [n,n-1,...,2,1]
count = bubbleSort(nums);
cout << "平方阶(冒泡排序)的操作数量 = " << count << endl;
count = exponential(n);
cout << "指数阶(循环实现)的操作数量 = " << count << endl;
count = expRecur(n);
cout << "指数阶(递归实现)的操作数量 = " << count << endl;
count = logarithmic(n);
cout << "对数阶(循环实现)的操作数量 = " << count << endl;
count = logRecur(n);
cout << "对数阶(递归实现)的操作数量 = " << count << endl;
count = linearLogRecur(n);
cout << "线性对数阶(递归实现)的操作数量 = " << count << endl;
count = factorialRecur(n);
cout << "阶乘阶(递归实现)的操作数量 = " << count << endl;
return 0;
}