hello-algo/codes/python/chapter_dynamic_programming/unbounded_knapsack.py
Yudong Jin a005c6ebd3
Some improvements (#1073)
* Update avatar's link in the landing page

* Bug fixes

* Move assets folder from overrides to docs

* Reduce figures' corner radius

* Update copyright

* Update header image

* Krahets -> krahets

* Update the landing page
2024-02-07 22:21:18 +08:00

56 lines
1.7 KiB
Python

"""
File: unbounded_knapsack.py
Created Time: 2023-07-10
Author: krahets (krahets@163.com)
"""
def unbounded_knapsack_dp(wgt: list[int], val: list[int], cap: int) -> int:
"""完全背包:动态规划"""
n = len(wgt)
# 初始化 dp 表
dp = [[0] * (cap + 1) for _ in range(n + 1)]
# 状态转移
for i in range(1, n + 1):
for c in range(1, cap + 1):
if wgt[i - 1] > c:
# 若超过背包容量,则不选物品 i
dp[i][c] = dp[i - 1][c]
else:
# 不选和选物品 i 这两种方案的较大值
dp[i][c] = max(dp[i - 1][c], dp[i][c - wgt[i - 1]] + val[i - 1])
return dp[n][cap]
def unbounded_knapsack_dp_comp(wgt: list[int], val: list[int], cap: int) -> int:
"""完全背包:空间优化后的动态规划"""
n = len(wgt)
# 初始化 dp 表
dp = [0] * (cap + 1)
# 状态转移
for i in range(1, n + 1):
# 正序遍历
for c in range(1, cap + 1):
if wgt[i - 1] > c:
# 若超过背包容量,则不选物品 i
dp[c] = dp[c]
else:
# 不选和选物品 i 这两种方案的较大值
dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1])
return dp[cap]
"""Driver Code"""
if __name__ == "__main__":
wgt = [1, 2, 3]
val = [5, 11, 15]
cap = 4
# 动态规划
res = unbounded_knapsack_dp(wgt, val, cap)
print(f"不超过背包容量的最大物品价值为 {res}")
# 空间优化后的动态规划
res = unbounded_knapsack_dp_comp(wgt, val, cap)
print(f"不超过背包容量的最大物品价值为 {res}")