mirror of
https://github.com/krahets/hello-algo.git
synced 2025-01-23 22:40:25 +08:00
2626de8d0b
introduction, computational complexity.
171 lines
4.1 KiB
Rust
171 lines
4.1 KiB
Rust
/*
|
|
* File: time_complexity.rs
|
|
* Created Time: 2023-01-10
|
|
* Author: xBLACICEx (xBLACKICEx@outlook.com), sjinzh (sjinzh@gmail.com)
|
|
*/
|
|
|
|
/* 常数阶 */
|
|
fn constant(n: i32) -> i32 {
|
|
_ = n;
|
|
let mut count = 0;
|
|
let size = 100_000;
|
|
for _ in 0..size {
|
|
count += 1;
|
|
}
|
|
count
|
|
}
|
|
|
|
/* 线性阶 */
|
|
fn linear(n: i32) -> i32 {
|
|
let mut count = 0;
|
|
for _ in 0..n {
|
|
count += 1;
|
|
}
|
|
count
|
|
}
|
|
|
|
/* 线性阶(遍历数组) */
|
|
fn array_traversal(nums: &[i32]) -> i32 {
|
|
let mut count = 0;
|
|
// 循环次数与数组长度成正比
|
|
for _ in nums {
|
|
count += 1;
|
|
}
|
|
count
|
|
}
|
|
|
|
/* 平方阶 */
|
|
fn quadratic(n: i32) -> i32 {
|
|
let mut count = 0;
|
|
// 循环次数与数组长度成平方关系
|
|
for _ in 0..n {
|
|
for _ in 0..n {
|
|
count += 1;
|
|
}
|
|
}
|
|
count
|
|
}
|
|
|
|
/* 平方阶(冒泡排序) */
|
|
fn bubble_sort(nums: &mut [i32]) -> i32 {
|
|
let mut count = 0; // 计数器
|
|
// 外循环:未排序区间为 [0, i]
|
|
for i in (1..nums.len()).rev() {
|
|
// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
|
|
for j in 0..i {
|
|
if nums[j] > nums[j + 1] {
|
|
// 交换 nums[j] 与 nums[j + 1]
|
|
let tmp = nums[j];
|
|
nums[j] = nums[j + 1];
|
|
nums[j + 1] = tmp;
|
|
count += 3; // 元素交换包含 3 个单元操作
|
|
}
|
|
}
|
|
}
|
|
count
|
|
}
|
|
|
|
/* 指数阶(循环实现) */
|
|
fn exponential(n: i32) -> i32 {
|
|
let mut count = 0;
|
|
let mut base = 1;
|
|
// 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
|
|
for _ in 0..n {
|
|
for _ in 0..base {
|
|
count += 1
|
|
}
|
|
base *= 2;
|
|
}
|
|
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
|
|
count
|
|
}
|
|
|
|
/* 指数阶(递归实现) */
|
|
fn exp_recur(n: i32) -> i32 {
|
|
if n == 1 {
|
|
return 1;
|
|
}
|
|
exp_recur(n - 1) + exp_recur(n - 1) + 1
|
|
}
|
|
|
|
/* 对数阶(循环实现) */
|
|
fn logarithmic(mut n: f32) -> i32 {
|
|
let mut count = 0;
|
|
while n > 1.0 {
|
|
n = n / 2.0;
|
|
count += 1;
|
|
}
|
|
count
|
|
}
|
|
|
|
/* 对数阶(递归实现) */
|
|
fn log_recur(n: f32) -> i32 {
|
|
if n <= 1.0 {
|
|
return 0;
|
|
}
|
|
log_recur(n / 2.0) + 1
|
|
}
|
|
|
|
/* 线性对数阶 */
|
|
fn linear_log_recur(n: f32) -> i32 {
|
|
if n <= 1.0 {
|
|
return 1;
|
|
}
|
|
let mut count = linear_log_recur(n / 2.0) +
|
|
linear_log_recur(n / 2.0);
|
|
for _ in 0 ..n as i32 {
|
|
count += 1;
|
|
}
|
|
return count
|
|
}
|
|
|
|
/* 阶乘阶(递归实现) */
|
|
fn factorial_recur(n: i32) -> i32 {
|
|
if n == 0 {
|
|
return 1;
|
|
}
|
|
let mut count = 0;
|
|
// 从 1 个分裂出 n 个
|
|
for _ in 0..n {
|
|
count += factorial_recur(n - 1);
|
|
}
|
|
count
|
|
}
|
|
|
|
/* Driver Code */
|
|
fn main() {
|
|
// 可以修改 n 运行,体会一下各种复杂度的操作数量变化趋势
|
|
let n: i32 = 8;
|
|
println!("输入数据大小 n = {}", n);
|
|
|
|
let mut count = constant(n);
|
|
println!("常数阶的操作数量 = {}", count);
|
|
|
|
count = linear(n);
|
|
println!("线性阶的操作数量 = {}", count);
|
|
count = array_traversal(&vec![0; n as usize]);
|
|
println!("线性阶(遍历数组)的操作数量 = {}", count);
|
|
|
|
count = quadratic(n);
|
|
println!("平方阶的操作数量 = {}", count);
|
|
let mut nums = (1..=n).rev().collect::<Vec<_>>(); // [n,n-1,...,2,1]
|
|
count = bubble_sort(&mut nums);
|
|
println!("平方阶(冒泡排序)的操作数量 = {}", count);
|
|
|
|
count = exponential(n);
|
|
println!("指数阶(循环实现)的操作数量 = {}", count);
|
|
count = exp_recur(n);
|
|
println!("指数阶(递归实现)的操作数量 = {}", count);
|
|
|
|
count = logarithmic(n as f32);
|
|
println!("对数阶(循环实现)的操作数量 = {}", count);
|
|
count = log_recur(n as f32);
|
|
println!("对数阶(递归实现)的操作数量 = {}", count);
|
|
|
|
count = linear_log_recur(n as f32);
|
|
println!("线性对数阶(递归实现)的操作数量 = {}", count);
|
|
|
|
count = factorial_recur(n);
|
|
println!("阶乘阶(递归实现)的操作数量 = {}", count);
|
|
}
|