mirror of
https://github.com/krahets/hello-algo.git
synced 2025-01-27 09:28:41 +08:00
170 lines
4.5 KiB
C
170 lines
4.5 KiB
C
/**
|
|
* File: binary_search_tree.c
|
|
* Created Time: 2023-01-11
|
|
* Author: Reanon (793584285@qq.com)
|
|
*/
|
|
|
|
#include "../utils/common.h"
|
|
|
|
/* 二叉搜索树你结构体 */
|
|
typedef struct {
|
|
TreeNode *root;
|
|
} BinarySearchTree;
|
|
|
|
/* 构造函数 */
|
|
BinarySearchTree *newBinarySearchTree() {
|
|
// 初始化空树
|
|
BinarySearchTree *bst = (BinarySearchTree *)malloc(sizeof(BinarySearchTree));
|
|
bst->root = NULL;
|
|
return bst;
|
|
}
|
|
|
|
/* 析构函数 */
|
|
void delBinarySearchTree(BinarySearchTree *bst) {
|
|
freeMemoryTree(bst->root);
|
|
free(bst);
|
|
}
|
|
|
|
/* 获取二叉树根节点 */
|
|
TreeNode *getRoot(BinarySearchTree *bst) {
|
|
return bst->root;
|
|
}
|
|
|
|
/* 查找节点 */
|
|
TreeNode *search(BinarySearchTree *bst, int num) {
|
|
TreeNode *cur = bst->root;
|
|
// 循环查找,越过叶节点后跳出
|
|
while (cur != NULL) {
|
|
if (cur->val < num) {
|
|
// 目标节点在 cur 的右子树中
|
|
cur = cur->right;
|
|
} else if (cur->val > num) {
|
|
// 目标节点在 cur 的左子树中
|
|
cur = cur->left;
|
|
} else {
|
|
// 找到目标节点,跳出循环
|
|
break;
|
|
}
|
|
}
|
|
// 返回目标节点
|
|
return cur;
|
|
}
|
|
|
|
/* 插入节点 */
|
|
void insert(BinarySearchTree *bst, int num) {
|
|
// 若树为空,则初始化根节点
|
|
if (bst->root == NULL) {
|
|
bst->root = newTreeNode(num);
|
|
return;
|
|
}
|
|
TreeNode *cur = bst->root, *pre = NULL;
|
|
// 循环查找,越过叶节点后跳出
|
|
while (cur != NULL) {
|
|
// 找到重复节点,直接返回
|
|
if (cur->val == num) {
|
|
return;
|
|
}
|
|
pre = cur;
|
|
if (cur->val < num) {
|
|
// 插入位置在 cur 的右子树中
|
|
cur = cur->right;
|
|
} else {
|
|
// 插入位置在 cur 的左子树中
|
|
cur = cur->left;
|
|
}
|
|
}
|
|
// 插入节点
|
|
TreeNode *node = newTreeNode(num);
|
|
if (pre->val < num) {
|
|
pre->right = node;
|
|
} else {
|
|
pre->left = node;
|
|
}
|
|
}
|
|
|
|
/* 删除节点 */
|
|
// 由于引入了 stdio.h ,此处无法使用 remove 关键词
|
|
void removeItem(BinarySearchTree *bst, int num) {
|
|
// 若树为空,直接提前返回
|
|
if (bst->root == NULL)
|
|
return;
|
|
TreeNode *cur = bst->root, *pre = NULL;
|
|
// 循环查找,越过叶节点后跳出
|
|
while (cur != NULL) {
|
|
// 找到待删除节点,跳出循环
|
|
if (cur->val == num)
|
|
break;
|
|
pre = cur;
|
|
if (cur->val < num) {
|
|
// 待删除节点在 root 的右子树中
|
|
cur = cur->right;
|
|
} else {
|
|
// 待删除节点在 root 的左子树中
|
|
cur = cur->left;
|
|
}
|
|
}
|
|
// 若无待删除节点,则直接返回
|
|
if (cur == NULL)
|
|
return;
|
|
// 判断待删除节点是否存在子节点
|
|
if (cur->left == NULL || cur->right == NULL) {
|
|
/* 子节点数量 = 0 or 1 */
|
|
// 当子节点数量 = 0 / 1 时, child = nullptr / 该子节点
|
|
TreeNode *child = cur->left != NULL ? cur->left : cur->right;
|
|
// 删除节点 cur
|
|
if (pre->left == cur) {
|
|
pre->left = child;
|
|
} else {
|
|
pre->right = child;
|
|
}
|
|
} else {
|
|
/* 子节点数量 = 2 */
|
|
// 获取中序遍历中 cur 的下一个节点
|
|
TreeNode *tmp = cur->right;
|
|
while (tmp->left != NULL) {
|
|
tmp = tmp->left;
|
|
}
|
|
int tmpVal = tmp->val;
|
|
// 递归删除节点 tmp
|
|
removeItem(bst, tmp->val);
|
|
// 用 tmp 覆盖 cur
|
|
cur->val = tmpVal;
|
|
}
|
|
}
|
|
|
|
/* Driver Code */
|
|
int main() {
|
|
/* 初始化二叉搜索树 */
|
|
int nums[] = {8, 4, 12, 2, 6, 10, 14, 1, 3, 5, 7, 9, 11, 13, 15};
|
|
BinarySearchTree *bst = newBinarySearchTree();
|
|
for (int i = 0; i < sizeof(nums) / sizeof(int); i++) {
|
|
insert(bst, nums[i]);
|
|
}
|
|
printf("初始化的二叉树为\n");
|
|
printTree(getRoot(bst));
|
|
|
|
/* 查找节点 */
|
|
TreeNode *node = search(bst, 7);
|
|
printf("查找到的节点对象的节点值 = %d\n", node->val);
|
|
|
|
/* 插入节点 */
|
|
insert(bst, 16);
|
|
printf("插入节点 16 后,二叉树为\n");
|
|
printTree(getRoot(bst));
|
|
|
|
/* 删除节点 */
|
|
removeItem(bst, 1);
|
|
printf("删除节点 1 后,二叉树为\n");
|
|
printTree(getRoot(bst));
|
|
removeItem(bst, 2);
|
|
printf("删除节点 2 后,二叉树为\n");
|
|
printTree(getRoot(bst));
|
|
removeItem(bst, 4);
|
|
printf("删除节点 4 后,二叉树为\n");
|
|
printTree(getRoot(bst));
|
|
|
|
// 释放内存
|
|
delBinarySearchTree(bst);
|
|
return 0;
|
|
}
|