mirror of
https://github.com/krahets/hello-algo.git
synced 2025-01-23 14:20:29 +08:00
2626de8d0b
introduction, computational complexity.
234 lines
7.0 KiB
C++
234 lines
7.0 KiB
C++
/**
|
||
* File: avl_tree.cpp
|
||
* Created Time: 2023-02-03
|
||
* Author: what-is-me (whatisme@outlook.jp)
|
||
*/
|
||
|
||
#include "../utils/common.hpp"
|
||
|
||
/* AVL 树 */
|
||
class AVLTree {
|
||
public:
|
||
TreeNode *root; // 根节点
|
||
private:
|
||
/* 更新节点高度 */
|
||
void updateHeight(TreeNode *node) {
|
||
// 节点高度等于最高子树高度 + 1
|
||
node->height = max(height(node->left), height(node->right)) + 1;
|
||
}
|
||
|
||
/* 右旋操作 */
|
||
TreeNode *rightRotate(TreeNode *node) {
|
||
TreeNode *child = node->left;
|
||
TreeNode *grandChild = child->right;
|
||
// 以 child 为原点,将 node 向右旋转
|
||
child->right = node;
|
||
node->left = grandChild;
|
||
// 更新节点高度
|
||
updateHeight(node);
|
||
updateHeight(child);
|
||
// 返回旋转后子树的根节点
|
||
return child;
|
||
}
|
||
|
||
/* 左旋操作 */
|
||
TreeNode *leftRotate(TreeNode *node) {
|
||
TreeNode *child = node->right;
|
||
TreeNode *grandChild = child->left;
|
||
// 以 child 为原点,将 node 向左旋转
|
||
child->left = node;
|
||
node->right = grandChild;
|
||
// 更新节点高度
|
||
updateHeight(node);
|
||
updateHeight(child);
|
||
// 返回旋转后子树的根节点
|
||
return child;
|
||
}
|
||
|
||
/* 执行旋转操作,使该子树重新恢复平衡 */
|
||
TreeNode *rotate(TreeNode *node) {
|
||
// 获取节点 node 的平衡因子
|
||
int _balanceFactor = balanceFactor(node);
|
||
// 左偏树
|
||
if (_balanceFactor > 1) {
|
||
if (balanceFactor(node->left) >= 0) {
|
||
// 右旋
|
||
return rightRotate(node);
|
||
} else {
|
||
// 先左旋后右旋
|
||
node->left = leftRotate(node->left);
|
||
return rightRotate(node);
|
||
}
|
||
}
|
||
// 右偏树
|
||
if (_balanceFactor < -1) {
|
||
if (balanceFactor(node->right) <= 0) {
|
||
// 左旋
|
||
return leftRotate(node);
|
||
} else {
|
||
// 先右旋后左旋
|
||
node->right = rightRotate(node->right);
|
||
return leftRotate(node);
|
||
}
|
||
}
|
||
// 平衡树,无须旋转,直接返回
|
||
return node;
|
||
}
|
||
|
||
/* 递归插入节点(辅助方法) */
|
||
TreeNode *insertHelper(TreeNode *node, int val) {
|
||
if (node == nullptr)
|
||
return new TreeNode(val);
|
||
/* 1. 查找插入位置,并插入节点 */
|
||
if (val < node->val)
|
||
node->left = insertHelper(node->left, val);
|
||
else if (val > node->val)
|
||
node->right = insertHelper(node->right, val);
|
||
else
|
||
return node; // 重复节点不插入,直接返回
|
||
updateHeight(node); // 更新节点高度
|
||
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
|
||
node = rotate(node);
|
||
// 返回子树的根节点
|
||
return node;
|
||
}
|
||
|
||
/* 递归删除节点(辅助方法) */
|
||
TreeNode *removeHelper(TreeNode *node, int val) {
|
||
if (node == nullptr)
|
||
return nullptr;
|
||
/* 1. 查找节点,并删除之 */
|
||
if (val < node->val)
|
||
node->left = removeHelper(node->left, val);
|
||
else if (val > node->val)
|
||
node->right = removeHelper(node->right, val);
|
||
else {
|
||
if (node->left == nullptr || node->right == nullptr) {
|
||
TreeNode *child = node->left != nullptr ? node->left : node->right;
|
||
// 子节点数量 = 0 ,直接删除 node 并返回
|
||
if (child == nullptr) {
|
||
delete node;
|
||
return nullptr;
|
||
}
|
||
// 子节点数量 = 1 ,直接删除 node
|
||
else {
|
||
delete node;
|
||
node = child;
|
||
}
|
||
} else {
|
||
// 子节点数量 = 2 ,则将中序遍历的下个节点删除,并用该节点替换当前节点
|
||
TreeNode *temp = node->right;
|
||
while (temp->left != nullptr) {
|
||
temp = temp->left;
|
||
}
|
||
int tempVal = temp->val;
|
||
node->right = removeHelper(node->right, temp->val);
|
||
node->val = tempVal;
|
||
}
|
||
}
|
||
updateHeight(node); // 更新节点高度
|
||
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
|
||
node = rotate(node);
|
||
// 返回子树的根节点
|
||
return node;
|
||
}
|
||
|
||
public:
|
||
/* 获取节点高度 */
|
||
int height(TreeNode *node) {
|
||
// 空节点高度为 -1 ,叶节点高度为 0
|
||
return node == nullptr ? -1 : node->height;
|
||
}
|
||
|
||
/* 获取平衡因子 */
|
||
int balanceFactor(TreeNode *node) {
|
||
// 空节点平衡因子为 0
|
||
if (node == nullptr)
|
||
return 0;
|
||
// 节点平衡因子 = 左子树高度 - 右子树高度
|
||
return height(node->left) - height(node->right);
|
||
}
|
||
|
||
/* 插入节点 */
|
||
void insert(int val) {
|
||
root = insertHelper(root, val);
|
||
}
|
||
|
||
/* 删除节点 */
|
||
void remove(int val) {
|
||
root = removeHelper(root, val);
|
||
}
|
||
|
||
/* 查找节点 */
|
||
TreeNode *search(int val) {
|
||
TreeNode *cur = root;
|
||
// 循环查找,越过叶节点后跳出
|
||
while (cur != nullptr) {
|
||
// 目标节点在 cur 的右子树中
|
||
if (cur->val < val)
|
||
cur = cur->right;
|
||
// 目标节点在 cur 的左子树中
|
||
else if (cur->val > val)
|
||
cur = cur->left;
|
||
// 找到目标节点,跳出循环
|
||
else
|
||
break;
|
||
}
|
||
// 返回目标节点
|
||
return cur;
|
||
}
|
||
|
||
/*构造方法*/
|
||
AVLTree() : root(nullptr) {
|
||
}
|
||
|
||
/*析构方法*/
|
||
~AVLTree() {
|
||
freeMemoryTree(root);
|
||
}
|
||
};
|
||
|
||
void testInsert(AVLTree &tree, int val) {
|
||
tree.insert(val);
|
||
cout << "\n插入节点 " << val << " 后,AVL 树为" << endl;
|
||
printTree(tree.root);
|
||
}
|
||
|
||
void testRemove(AVLTree &tree, int val) {
|
||
tree.remove(val);
|
||
cout << "\n删除节点 " << val << " 后,AVL 树为" << endl;
|
||
printTree(tree.root);
|
||
}
|
||
|
||
/* Driver Code */
|
||
int main() {
|
||
/* 初始化空 AVL 树 */
|
||
AVLTree avlTree;
|
||
|
||
/* 插入节点 */
|
||
// 请关注插入节点后,AVL 树是如何保持平衡的
|
||
testInsert(avlTree, 1);
|
||
testInsert(avlTree, 2);
|
||
testInsert(avlTree, 3);
|
||
testInsert(avlTree, 4);
|
||
testInsert(avlTree, 5);
|
||
testInsert(avlTree, 8);
|
||
testInsert(avlTree, 7);
|
||
testInsert(avlTree, 9);
|
||
testInsert(avlTree, 10);
|
||
testInsert(avlTree, 6);
|
||
|
||
/* 插入重复节点 */
|
||
testInsert(avlTree, 7);
|
||
|
||
/* 删除节点 */
|
||
// 请关注删除节点后,AVL 树是如何保持平衡的
|
||
testRemove(avlTree, 8); // 删除度为 0 的节点
|
||
testRemove(avlTree, 5); // 删除度为 1 的节点
|
||
testRemove(avlTree, 4); // 删除度为 2 的节点
|
||
|
||
/* 查询节点 */
|
||
TreeNode *node = avlTree.search(7);
|
||
cout << "\n查找到的节点对象为 " << node << ",节点值 = " << node->val << endl;
|
||
}
|