hello-algo/codes/csharp/chapter_computational_complexity/time_complexity.cs
Yudong Jin 3ea91bda99
fix: Use int instead of float for the example code of log time complexity (#1164)
* Use int instead of float for the example code of log time complexity

* Bug fixes

* Bug fixes
2024-03-23 02:17:48 +08:00

196 lines
5.5 KiB
C#
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/**
* File: time_complexity.cs
* Created Time: 2022-12-23
* Author: haptear (haptear@hotmail.com)
*/
namespace hello_algo.chapter_computational_complexity;
public class time_complexity {
void Algorithm(int n) {
int a = 1; // +0技巧 1
a += n; // +0技巧 1
// +n技巧 2
for (int i = 0; i < 5 * n + 1; i++) {
Console.WriteLine(0);
}
// +n*n技巧 3
for (int i = 0; i < 2 * n; i++) {
for (int j = 0; j < n + 1; j++) {
Console.WriteLine(0);
}
}
}
// 算法 A 时间复杂度:常数阶
void AlgorithmA(int n) {
Console.WriteLine(0);
}
// 算法 B 时间复杂度:线性阶
void AlgorithmB(int n) {
for (int i = 0; i < n; i++) {
Console.WriteLine(0);
}
}
// 算法 C 时间复杂度:常数阶
void AlgorithmC(int n) {
for (int i = 0; i < 1000000; i++) {
Console.WriteLine(0);
}
}
/* 常数阶 */
int Constant(int n) {
int count = 0;
int size = 100000;
for (int i = 0; i < size; i++)
count++;
return count;
}
/* 线性阶 */
int Linear(int n) {
int count = 0;
for (int i = 0; i < n; i++)
count++;
return count;
}
/* 线性阶(遍历数组) */
int ArrayTraversal(int[] nums) {
int count = 0;
// 循环次数与数组长度成正比
foreach (int num in nums) {
count++;
}
return count;
}
/* 平方阶 */
int Quadratic(int n) {
int count = 0;
// 循环次数与数据大小 n 成平方关系
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
count++;
}
}
return count;
}
/* 平方阶(冒泡排序) */
int BubbleSort(int[] nums) {
int count = 0; // 计数器
// 外循环:未排序区间为 [0, i]
for (int i = nums.Length - 1; i > 0; i--) {
// 内循环:将未排序区间 [0, i] 中的最大元素交换至该区间的最右端
for (int j = 0; j < i; j++) {
if (nums[j] > nums[j + 1]) {
// 交换 nums[j] 与 nums[j + 1]
(nums[j + 1], nums[j]) = (nums[j], nums[j + 1]);
count += 3; // 元素交换包含 3 个单元操作
}
}
}
return count;
}
/* 指数阶(循环实现) */
int Exponential(int n) {
int count = 0, bas = 1;
// 细胞每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
for (int i = 0; i < n; i++) {
for (int j = 0; j < bas; j++) {
count++;
}
bas *= 2;
}
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
return count;
}
/* 指数阶(递归实现) */
int ExpRecur(int n) {
if (n == 1) return 1;
return ExpRecur(n - 1) + ExpRecur(n - 1) + 1;
}
/* 对数阶(循环实现) */
int Logarithmic(int n) {
int count = 0;
while (n > 1) {
n /= 2;
count++;
}
return count;
}
/* 对数阶(递归实现) */
int LogRecur(int n) {
if (n <= 1) return 0;
return LogRecur(n / 2) + 1;
}
/* 线性对数阶 */
int LinearLogRecur(int n) {
if (n <= 1) return 1;
int count = LinearLogRecur(n / 2) + LinearLogRecur(n / 2);
for (int i = 0; i < n; i++) {
count++;
}
return count;
}
/* 阶乘阶(递归实现) */
int FactorialRecur(int n) {
if (n == 0) return 1;
int count = 0;
// 从 1 个分裂出 n 个
for (int i = 0; i < n; i++) {
count += FactorialRecur(n - 1);
}
return count;
}
[Test]
public void Test() {
// 可以修改 n 运行,体会一下各种复杂度的操作数量变化趋势
int n = 8;
Console.WriteLine("输入数据大小 n = " + n);
int count = Constant(n);
Console.WriteLine("常数阶的操作数量 = " + count);
count = Linear(n);
Console.WriteLine("线性阶的操作数量 = " + count);
count = ArrayTraversal(new int[n]);
Console.WriteLine("线性阶(遍历数组)的操作数量 = " + count);
count = Quadratic(n);
Console.WriteLine("平方阶的操作数量 = " + count);
int[] nums = new int[n];
for (int i = 0; i < n; i++)
nums[i] = n - i; // [n,n-1,...,2,1]
count = BubbleSort(nums);
Console.WriteLine("平方阶(冒泡排序)的操作数量 = " + count);
count = Exponential(n);
Console.WriteLine("指数阶(循环实现)的操作数量 = " + count);
count = ExpRecur(n);
Console.WriteLine("指数阶(递归实现)的操作数量 = " + count);
count = Logarithmic(n);
Console.WriteLine("对数阶(循环实现)的操作数量 = " + count);
count = LogRecur(n);
Console.WriteLine("对数阶(递归实现)的操作数量 = " + count);
count = LinearLogRecur(n);
Console.WriteLine("线性对数阶(递归实现)的操作数量 = " + count);
count = FactorialRecur(n);
Console.WriteLine("阶乘阶(递归实现)的操作数量 = " + count);
}
}