hello-algo/codes/swift/chapter_computational_complexity/time_complexity.swift
krahets 2626de8d0b Polish the chapter
introduction, computational complexity.
2023-08-20 14:51:39 +08:00

173 lines
4.2 KiB
Swift
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/**
* File: time_complexity.swift
* Created Time: 2022-12-26
* Author: nuomi1 (nuomi1@qq.com)
*/
/* */
func constant(n: Int) -> Int {
var count = 0
let size = 100_000
for _ in 0 ..< size {
count += 1
}
return count
}
/* 线 */
func linear(n: Int) -> Int {
var count = 0
for _ in 0 ..< n {
count += 1
}
return count
}
/* 线 */
func arrayTraversal(nums: [Int]) -> Int {
var count = 0
//
for _ in nums {
count += 1
}
return count
}
/* */
func quadratic(n: Int) -> Int {
var count = 0
//
for _ in 0 ..< n {
for _ in 0 ..< n {
count += 1
}
}
return count
}
/* */
func bubbleSort(nums: inout [Int]) -> Int {
var count = 0 //
// [0, i]
for i in stride(from: nums.count - 1, to: 0, by: -1) {
// [0, i]
for j in 0 ..< i {
if nums[j] > nums[j + 1] {
// nums[j] nums[j + 1]
let tmp = nums[j]
nums[j] = nums[j + 1]
nums[j + 1] = tmp
count += 3 // 3
}
}
}
return count
}
/* */
func exponential(n: Int) -> Int {
var count = 0
var base = 1
// 1, 2, 4, 8, ..., 2^(n-1)
for _ in 0 ..< n {
for _ in 0 ..< base {
count += 1
}
base *= 2
}
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
return count
}
/* */
func expRecur(n: Int) -> Int {
if n == 1 {
return 1
}
return expRecur(n: n - 1) + expRecur(n: n - 1) + 1
}
/* */
func logarithmic(n: Double) -> Int {
var count = 0
var n = n
while n > 1 {
n = n / 2
count += 1
}
return count
}
/* */
func logRecur(n: Double) -> Int {
if n <= 1 {
return 0
}
return logRecur(n: n / 2) + 1
}
/* 线 */
func linearLogRecur(n: Double) -> Int {
if n <= 1 {
return 1
}
var count = linearLogRecur(n: n / 2) + linearLogRecur(n: n / 2)
for _ in stride(from: 0, to: n, by: 1) {
count += 1
}
return count
}
/* */
func factorialRecur(n: Int) -> Int {
if n == 0 {
return 1
}
var count = 0
// 1 n
for _ in 0 ..< n {
count += factorialRecur(n: n - 1)
}
return count
}
@main
enum TimeComplexity {
/* Driver Code */
static func main() {
// n
let n = 8
print("输入数据大小 n = \(n)")
var count = constant(n: n)
print("常数阶的操作数量 = \(count)")
count = linear(n: n)
print("线性阶的操作数量 = \(count)")
count = arrayTraversal(nums: Array(repeating: 0, count: n))
print("线性阶(遍历数组)的操作数量 = \(count)")
count = quadratic(n: n)
print("平方阶的操作数量 = \(count)")
var nums = Array(stride(from: n, to: 0, by: -1)) // [n,n-1,...,2,1]
count = bubbleSort(nums: &nums)
print("平方阶(冒泡排序)的操作数量 = \(count)")
count = exponential(n: n)
print("指数阶(循环实现)的操作数量 = \(count)")
count = expRecur(n: n)
print("指数阶(递归实现)的操作数量 = \(count)")
count = logarithmic(n: Double(n))
print("对数阶(循环实现)的操作数量 = \(count)")
count = logRecur(n: Double(n))
print("对数阶(递归实现)的操作数量 = \(count)")
count = linearLogRecur(n: Double(n))
print("线性对数阶(递归实现)的操作数量 = \(count)")
count = factorialRecur(n: n)
print("阶乘阶(递归实现)的操作数量 = \(count)")
}
}