hello-algo/codes/python/chapter_computational_complexity/time_complexity.py
Yudong Jin 919236f479 1. Add array representation of binary tree.
2. Update the LEGO example.
3. Update headers of the Python files.
2022-12-23 00:44:40 +08:00

141 lines
3.6 KiB
Python

"""
File: time_complexity.py
Created Time: 2022-11-25
Author: Krahets (krahets@163.com)
"""
import sys, os.path as osp
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from include import *
""" 常数阶 """
def constant(n):
count = 0
size = 100000
for _ in range(size):
count += 1
return count
""" 线性阶 """
def linear(n):
count = 0
for _ in range(n):
count += 1
return count
""" 线性阶(遍历数组)"""
def array_traversal(nums):
count = 0
# 循环次数与数组长度成正比
for num in nums:
count += 1
return count
""" 平方阶 """
def quadratic(n):
count = 0
# 循环次数与数组长度成平方关系
for i in range(n):
for j in range(n):
count += 1
return count
""" 平方阶(冒泡排序)"""
def bubble_sort(nums):
count = 0 # 计数器
# 外循环:待排序元素数量为 n-1, n-2, ..., 1
for i in range(len(nums) - 1, 0, -1):
# 内循环:冒泡操作
for j in range(i):
if nums[j] > nums[j + 1]:
# 交换 nums[j] 与 nums[j + 1]
tmp = nums[j]
nums[j] = nums[j + 1]
nums[j + 1] = tmp
count += 3 # 元素交换包含 3 个单元操作
return count
""" 指数阶(循环实现)"""
def exponential(n):
count, base = 0, 1
# cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
for _ in range(n):
for _ in range(base):
count += 1
base *= 2
# count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
return count
""" 指数阶(递归实现)"""
def exp_recur(n):
if n == 1: return 1
return exp_recur(n - 1) + exp_recur(n - 1) + 1
""" 对数阶(循环实现)"""
def logarithmic(n):
count = 0
while n > 1:
n = n / 2
count += 1
return count
""" 对数阶(递归实现)"""
def log_recur(n):
if n <= 1: return 0
return log_recur(n / 2) + 1
""" 线性对数阶 """
def linear_log_recur(n):
if n <= 1: return 1
count = linear_log_recur(n // 2) + \
linear_log_recur(n // 2)
for _ in range(n):
count += 1
return count
""" 阶乘阶(递归实现)"""
def factorial_recur(n):
if n == 0: return 1
count = 0
# 从 1 个分裂出 n 个
for _ in range(n):
count += factorial_recur(n - 1)
return count
""" Driver Code """
if __name__ == "__main__":
# 可以修改 n 运行,体会一下各种复杂度的操作数量变化趋势
n = 8
print("输入数据大小 n =", n)
count = constant(n)
print("常数阶的计算操作数量 =", count)
count = linear(n)
print("线性阶的计算操作数量 =", count)
count = array_traversal([0] * n)
print("线性阶(遍历数组)的计算操作数量 =", count)
count = quadratic(n)
print("平方阶的计算操作数量 =", count)
nums = [i for i in range(n, 0, -1)] # [n,n-1,...,2,1]
count = bubble_sort(nums)
print("平方阶(冒泡排序)的计算操作数量 =", count)
count = exponential(n)
print("指数阶(循环实现)的计算操作数量 =", count)
count = exp_recur(n)
print("指数阶(递归实现)的计算操作数量 =", count)
count = logarithmic(n)
print("对数阶(循环实现)的计算操作数量 =", count)
count = log_recur(n)
print("对数阶(递归实现)的计算操作数量 =", count)
count = linear_log_recur(n)
print("线性对数阶(递归实现)的计算操作数量 =", count)
count = factorial_recur(n)
print("阶乘阶(递归实现)的计算操作数量 =", count)