hello-algo/codes/csharp/chapter_dynamic_programming/knapsack.cs
hpstory f62256bee1
fix(csharp): Modify method name to PascalCase, simplify new expression (#840)
* Modify method name to PascalCase(array and linked list)

* Modify method name to PascalCase(backtracking)

* Modify method name to PascalCase(computational complexity)

* Modify method name to PascalCase(divide and conquer)

* Modify method name to PascalCase(dynamic programming)

* Modify method name to PascalCase(graph)

* Modify method name to PascalCase(greedy)

* Modify method name to PascalCase(hashing)

* Modify method name to PascalCase(heap)

* Modify method name to PascalCase(searching)

* Modify method name to PascalCase(sorting)

* Modify method name to PascalCase(stack and queue)

* Modify method name to PascalCase(tree)

* local check
2023-10-07 12:33:46 -05:00

119 lines
4.1 KiB
C#

/**
* File: knapsack.cs
* Created Time: 2023-07-07
* Author: hpstory (hpstory1024@163.com)
*/
namespace hello_algo.chapter_dynamic_programming;
public class knapsack {
/* 0-1 背包:暴力搜索 */
public int KnapsackDFS(int[] weight, int[] val, int i, int c) {
// 若已选完所有物品或背包无容量,则返回价值 0
if (i == 0 || c == 0) {
return 0;
}
// 若超过背包容量,则只能不放入背包
if (weight[i - 1] > c) {
return KnapsackDFS(weight, val, i - 1, c);
}
// 计算不放入和放入物品 i 的最大价值
int no = KnapsackDFS(weight, val, i - 1, c);
int yes = KnapsackDFS(weight, val, i - 1, c - weight[i - 1]) + val[i - 1];
// 返回两种方案中价值更大的那一个
return Math.Max(no, yes);
}
/* 0-1 背包:记忆化搜索 */
public int KnapsackDFSMem(int[] weight, int[] val, int[][] mem, int i, int c) {
// 若已选完所有物品或背包无容量,则返回价值 0
if (i == 0 || c == 0) {
return 0;
}
// 若已有记录,则直接返回
if (mem[i][c] != -1) {
return mem[i][c];
}
// 若超过背包容量,则只能不放入背包
if (weight[i - 1] > c) {
return KnapsackDFSMem(weight, val, mem, i - 1, c);
}
// 计算不放入和放入物品 i 的最大价值
int no = KnapsackDFSMem(weight, val, mem, i - 1, c);
int yes = KnapsackDFSMem(weight, val, mem, i - 1, c - weight[i - 1]) + val[i - 1];
// 记录并返回两种方案中价值更大的那一个
mem[i][c] = Math.Max(no, yes);
return mem[i][c];
}
/* 0-1 背包:动态规划 */
public int KnapsackDP(int[] weight, int[] val, int cap) {
int n = weight.Length;
// 初始化 dp 表
int[,] dp = new int[n + 1, cap + 1];
// 状态转移
for (int i = 1; i <= n; i++) {
for (int c = 1; c <= cap; c++) {
if (weight[i - 1] > c) {
// 若超过背包容量,则不选物品 i
dp[i, c] = dp[i - 1, c];
} else {
// 不选和选物品 i 这两种方案的较大值
dp[i, c] = Math.Max(dp[i - 1, c - weight[i - 1]] + val[i - 1], dp[i - 1, c]);
}
}
}
return dp[n, cap];
}
/* 0-1 背包:空间优化后的动态规划 */
public int KnapsackDPComp(int[] weight, int[] val, int cap) {
int n = weight.Length;
// 初始化 dp 表
int[] dp = new int[cap + 1];
// 状态转移
for (int i = 1; i <= n; i++) {
// 倒序遍历
for (int c = cap; c > 0; c--) {
if (weight[i - 1] > c) {
// 若超过背包容量,则不选物品 i
dp[c] = dp[c];
} else {
// 不选和选物品 i 这两种方案的较大值
dp[c] = Math.Max(dp[c], dp[c - weight[i - 1]] + val[i - 1]);
}
}
}
return dp[cap];
}
[Test]
public void Test() {
int[] weight = { 10, 20, 30, 40, 50 };
int[] val = { 50, 120, 150, 210, 240 };
int cap = 50;
int n = weight.Length;
// 暴力搜索
int res = KnapsackDFS(weight, val, n, cap);
Console.WriteLine("不超过背包容量的最大物品价值为 " + res);
// 记忆化搜索
int[][] mem = new int[n + 1][];
for (int i = 0; i <= n; i++) {
mem[i] = new int[cap + 1];
Array.Fill(mem[i], -1);
}
res = KnapsackDFSMem(weight, val, mem, n, cap);
Console.WriteLine("不超过背包容量的最大物品价值为 " + res);
// 动态规划
res = KnapsackDP(weight, val, cap);
Console.WriteLine("不超过背包容量的最大物品价值为 " + res);
// 空间优化后的动态规划
res = KnapsackDPComp(weight, val, cap);
Console.WriteLine("不超过背包容量的最大物品价值为 " + res);
}
}