hello-algo/en/codes/python/chapter_dynamic_programming/knapsack.py
Yudong Jin 1c0f350ad6
translation: Add Python and Java code for EN version (#1345)
* Add the intial translation of code of all the languages

* test

* revert

* Remove

* Add Python and Java code for EN version
2024-05-06 05:21:51 +08:00

102 lines
3.6 KiB
Python

"""
File: knapsack.py
Created Time: 2023-07-03
Author: krahets (krahets@163.com)
"""
def knapsack_dfs(wgt: list[int], val: list[int], i: int, c: int) -> int:
"""0-1 Knapsack: Brute force search"""
# If all items have been chosen or the knapsack has no remaining capacity, return value 0
if i == 0 or c == 0:
return 0
# If exceeding the knapsack capacity, can only choose not to put it in the knapsack
if wgt[i - 1] > c:
return knapsack_dfs(wgt, val, i - 1, c)
# Calculate the maximum value of not putting in and putting in item i
no = knapsack_dfs(wgt, val, i - 1, c)
yes = knapsack_dfs(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1]
# Return the greater value of the two options
return max(no, yes)
def knapsack_dfs_mem(
wgt: list[int], val: list[int], mem: list[list[int]], i: int, c: int
) -> int:
"""0-1 Knapsack: Memoized search"""
# If all items have been chosen or the knapsack has no remaining capacity, return value 0
if i == 0 or c == 0:
return 0
# If there is a record, return it
if mem[i][c] != -1:
return mem[i][c]
# If exceeding the knapsack capacity, can only choose not to put it in the knapsack
if wgt[i - 1] > c:
return knapsack_dfs_mem(wgt, val, mem, i - 1, c)
# Calculate the maximum value of not putting in and putting in item i
no = knapsack_dfs_mem(wgt, val, mem, i - 1, c)
yes = knapsack_dfs_mem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1]
# Record and return the greater value of the two options
mem[i][c] = max(no, yes)
return mem[i][c]
def knapsack_dp(wgt: list[int], val: list[int], cap: int) -> int:
"""0-1 Knapsack: Dynamic programming"""
n = len(wgt)
# Initialize dp table
dp = [[0] * (cap + 1) for _ in range(n + 1)]
# State transition
for i in range(1, n + 1):
for c in range(1, cap + 1):
if wgt[i - 1] > c:
# If exceeding the knapsack capacity, do not choose item i
dp[i][c] = dp[i - 1][c]
else:
# The greater value between not choosing and choosing item i
dp[i][c] = max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1])
return dp[n][cap]
def knapsack_dp_comp(wgt: list[int], val: list[int], cap: int) -> int:
"""0-1 Knapsack: Space-optimized dynamic programming"""
n = len(wgt)
# Initialize dp table
dp = [0] * (cap + 1)
# State transition
for i in range(1, n + 1):
# Traverse in reverse order
for c in range(cap, 0, -1):
if wgt[i - 1] > c:
# If exceeding the knapsack capacity, do not choose item i
dp[c] = dp[c]
else:
# The greater value between not choosing and choosing item i
dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1])
return dp[cap]
"""Driver Code"""
if __name__ == "__main__":
wgt = [10, 20, 30, 40, 50]
val = [50, 120, 150, 210, 240]
cap = 50
n = len(wgt)
# Brute force search
res = knapsack_dfs(wgt, val, n, cap)
print(f"The maximum item value without exceeding knapsack capacity is {res}")
# Memoized search
mem = [[-1] * (cap + 1) for _ in range(n + 1)]
res = knapsack_dfs_mem(wgt, val, mem, n, cap)
print(f"The maximum item value without exceeding knapsack capacity is {res}")
# Dynamic programming
res = knapsack_dp(wgt, val, cap)
print(f"The maximum item value without exceeding knapsack capacity is {res}")
# Space-optimized dynamic programming
res = knapsack_dp_comp(wgt, val, cap)
print(f"The maximum item value without exceeding knapsack capacity is {res}")