mirror of
https://github.com/krahets/hello-algo.git
synced 2025-01-23 06:00:27 +08:00
f68bbb0d59
* Revised the book * Update the book with the second revised edition * Revise base on the manuscript of the first edition
201 lines
6.6 KiB
Python
201 lines
6.6 KiB
Python
"""
|
||
File: avl_tree.py
|
||
Created Time: 2022-12-20
|
||
Author: a16su (lpluls001@gmail.com)
|
||
"""
|
||
|
||
import sys
|
||
from pathlib import Path
|
||
|
||
sys.path.append(str(Path(__file__).parent.parent))
|
||
from modules import TreeNode, print_tree
|
||
|
||
|
||
class AVLTree:
|
||
"""AVL 树"""
|
||
|
||
def __init__(self):
|
||
"""构造方法"""
|
||
self._root = None
|
||
|
||
def get_root(self) -> TreeNode | None:
|
||
"""获取二叉树根节点"""
|
||
return self._root
|
||
|
||
def height(self, node: TreeNode | None) -> int:
|
||
"""获取节点高度"""
|
||
# 空节点高度为 -1 ,叶节点高度为 0
|
||
if node is not None:
|
||
return node.height
|
||
return -1
|
||
|
||
def update_height(self, node: TreeNode | None):
|
||
"""更新节点高度"""
|
||
# 节点高度等于最高子树高度 + 1
|
||
node.height = max([self.height(node.left), self.height(node.right)]) + 1
|
||
|
||
def balance_factor(self, node: TreeNode | None) -> int:
|
||
"""获取平衡因子"""
|
||
# 空节点平衡因子为 0
|
||
if node is None:
|
||
return 0
|
||
# 节点平衡因子 = 左子树高度 - 右子树高度
|
||
return self.height(node.left) - self.height(node.right)
|
||
|
||
def right_rotate(self, node: TreeNode | None) -> TreeNode | None:
|
||
"""右旋操作"""
|
||
child = node.left
|
||
grand_child = child.right
|
||
# 以 child 为原点,将 node 向右旋转
|
||
child.right = node
|
||
node.left = grand_child
|
||
# 更新节点高度
|
||
self.update_height(node)
|
||
self.update_height(child)
|
||
# 返回旋转后子树的根节点
|
||
return child
|
||
|
||
def left_rotate(self, node: TreeNode | None) -> TreeNode | None:
|
||
"""左旋操作"""
|
||
child = node.right
|
||
grand_child = child.left
|
||
# 以 child 为原点,将 node 向左旋转
|
||
child.left = node
|
||
node.right = grand_child
|
||
# 更新节点高度
|
||
self.update_height(node)
|
||
self.update_height(child)
|
||
# 返回旋转后子树的根节点
|
||
return child
|
||
|
||
def rotate(self, node: TreeNode | None) -> TreeNode | None:
|
||
"""执行旋转操作,使该子树重新恢复平衡"""
|
||
# 获取节点 node 的平衡因子
|
||
balance_factor = self.balance_factor(node)
|
||
# 左偏树
|
||
if balance_factor > 1:
|
||
if self.balance_factor(node.left) >= 0:
|
||
# 右旋
|
||
return self.right_rotate(node)
|
||
else:
|
||
# 先左旋后右旋
|
||
node.left = self.left_rotate(node.left)
|
||
return self.right_rotate(node)
|
||
# 右偏树
|
||
elif balance_factor < -1:
|
||
if self.balance_factor(node.right) <= 0:
|
||
# 左旋
|
||
return self.left_rotate(node)
|
||
else:
|
||
# 先右旋后左旋
|
||
node.right = self.right_rotate(node.right)
|
||
return self.left_rotate(node)
|
||
# 平衡树,无须旋转,直接返回
|
||
return node
|
||
|
||
def insert(self, val):
|
||
"""插入节点"""
|
||
self._root = self.insert_helper(self._root, val)
|
||
|
||
def insert_helper(self, node: TreeNode | None, val: int) -> TreeNode:
|
||
"""递归插入节点(辅助方法)"""
|
||
if node is None:
|
||
return TreeNode(val)
|
||
# 1. 查找插入位置并插入节点
|
||
if val < node.val:
|
||
node.left = self.insert_helper(node.left, val)
|
||
elif val > node.val:
|
||
node.right = self.insert_helper(node.right, val)
|
||
else:
|
||
# 重复节点不插入,直接返回
|
||
return node
|
||
# 更新节点高度
|
||
self.update_height(node)
|
||
# 2. 执行旋转操作,使该子树重新恢复平衡
|
||
return self.rotate(node)
|
||
|
||
def remove(self, val: int):
|
||
"""删除节点"""
|
||
self._root = self.remove_helper(self._root, val)
|
||
|
||
def remove_helper(self, node: TreeNode | None, val: int) -> TreeNode | None:
|
||
"""递归删除节点(辅助方法)"""
|
||
if node is None:
|
||
return None
|
||
# 1. 查找节点并删除
|
||
if val < node.val:
|
||
node.left = self.remove_helper(node.left, val)
|
||
elif val > node.val:
|
||
node.right = self.remove_helper(node.right, val)
|
||
else:
|
||
if node.left is None or node.right is None:
|
||
child = node.left or node.right
|
||
# 子节点数量 = 0 ,直接删除 node 并返回
|
||
if child is None:
|
||
return None
|
||
# 子节点数量 = 1 ,直接删除 node
|
||
else:
|
||
node = child
|
||
else:
|
||
# 子节点数量 = 2 ,则将中序遍历的下个节点删除,并用该节点替换当前节点
|
||
temp = node.right
|
||
while temp.left is not None:
|
||
temp = temp.left
|
||
node.right = self.remove_helper(node.right, temp.val)
|
||
node.val = temp.val
|
||
# 更新节点高度
|
||
self.update_height(node)
|
||
# 2. 执行旋转操作,使该子树重新恢复平衡
|
||
return self.rotate(node)
|
||
|
||
def search(self, val: int) -> TreeNode | None:
|
||
"""查找节点"""
|
||
cur = self._root
|
||
# 循环查找,越过叶节点后跳出
|
||
while cur is not None:
|
||
# 目标节点在 cur 的右子树中
|
||
if cur.val < val:
|
||
cur = cur.right
|
||
# 目标节点在 cur 的左子树中
|
||
elif cur.val > val:
|
||
cur = cur.left
|
||
# 找到目标节点,跳出循环
|
||
else:
|
||
break
|
||
# 返回目标节点
|
||
return cur
|
||
|
||
|
||
"""Driver Code"""
|
||
if __name__ == "__main__":
|
||
|
||
def test_insert(tree: AVLTree, val: int):
|
||
tree.insert(val)
|
||
print("\n插入节点 {} 后,AVL 树为".format(val))
|
||
print_tree(tree.get_root())
|
||
|
||
def test_remove(tree: AVLTree, val: int):
|
||
tree.remove(val)
|
||
print("\n删除节点 {} 后,AVL 树为".format(val))
|
||
print_tree(tree.get_root())
|
||
|
||
# 初始化空 AVL 树
|
||
avl_tree = AVLTree()
|
||
|
||
# 插入节点
|
||
# 请关注插入节点后,AVL 树是如何保持平衡的
|
||
for val in [1, 2, 3, 4, 5, 8, 7, 9, 10, 6]:
|
||
test_insert(avl_tree, val)
|
||
|
||
# 插入重复节点
|
||
test_insert(avl_tree, 7)
|
||
|
||
# 删除节点
|
||
# 请关注删除节点后,AVL 树是如何保持平衡的
|
||
test_remove(avl_tree, 8) # 删除度为 0 的节点
|
||
test_remove(avl_tree, 5) # 删除度为 1 的节点
|
||
test_remove(avl_tree, 4) # 删除度为 2 的节点
|
||
|
||
result_node = avl_tree.search(7)
|
||
print("\n查找到的节点对象为 {},节点值 = {}".format(result_node, result_node.val))
|