Bug fixes and improvements (#1078)
* Fix the logo in the en version * Optimize header color and fix body background color * Update theme switch's name * Fix backfrop-filter on Safari * Update some animation's file name for adding egde when cropping * Re-count the comments number * A bug fix in n_queens_problem.md
@ -44,6 +44,6 @@
|
||||
[file]{n_queens}-[class]{}-[func]{n_queens}
|
||||
```
|
||||
|
||||
逐行放置 $n$ 次,考虑列约束,则从第一行到最后一行分别有 $n$、$n-1$、$\dots$、$2$、$1$ 个选择,**因此时间复杂度为 $O(n!)$** 。实际上,根据对角线约束的剪枝也能够大幅缩小搜索空间,因而搜索效率往往优于以上时间复杂度。
|
||||
逐行放置 $n$ 次,考虑列约束,则从第一行到最后一行分别有 $n$、$n-1$、$\dots$、$2$、$1$ 个选择,使用 $O(n!)$ 时间;当保存解时,需要复制矩阵 `state` 并添加进 `res` ,复制操作使用 $O(n^2)$ 时间;因此总体时间复杂度为 $O(n! \cdot n^2)$ 。实际上,根据对角线约束的剪枝也能够大幅缩小搜索空间,因而搜索效率往往优于以上时间复杂度。
|
||||
|
||||
数组 `state` 使用 $O(n^2)$ 空间,数组 `cols`、`diags1` 和 `diags2` 皆使用 $O(n)$ 空间。最大递归深度为 $n$ ,使用 $O(n)$ 栈帧空间。因此,**空间复杂度为 $O(n^2)$** 。
|
||||
|
Before Width: | Height: | Size: 21 KiB After Width: | Height: | Size: 21 KiB |
Before Width: | Height: | Size: 22 KiB After Width: | Height: | Size: 22 KiB |
Before Width: | Height: | Size: 18 KiB After Width: | Height: | Size: 18 KiB |
@ -47,7 +47,7 @@
|
||||
|
||||
至此,我们就得到了下图所示的二维 $dp$ 矩阵,其尺寸与输入网格 $grid$ 相同。
|
||||
|
||||
![状态定义与 dp 表](dp_solution_pipeline.assets/min_path_sum_solution_step1.png)
|
||||
![状态定义与 dp 表](dp_solution_pipeline.assets/min_path_sum_solution_state_definition.png)
|
||||
|
||||
!!! note
|
||||
|
||||
@ -65,7 +65,7 @@ $$
|
||||
dp[i, j] = \min(dp[i-1, j], dp[i, j-1]) + grid[i, j]
|
||||
$$
|
||||
|
||||
![最优子结构与状态转移方程](dp_solution_pipeline.assets/min_path_sum_solution_step2.png)
|
||||
![最优子结构与状态转移方程](dp_solution_pipeline.assets/min_path_sum_solution_state_transition.png)
|
||||
|
||||
!!! note
|
||||
|
||||
@ -79,7 +79,7 @@ $$
|
||||
|
||||
如下图所示,由于每个格子是由其左方格子和上方格子转移而来,因此我们使用循环来遍历矩阵,外循环遍历各行,内循环遍历各列。
|
||||
|
||||
![边界条件与状态转移顺序](dp_solution_pipeline.assets/min_path_sum_solution_step3.png)
|
||||
![边界条件与状态转移顺序](dp_solution_pipeline.assets/min_path_sum_solution_initial_state.png)
|
||||
|
||||
!!! note
|
||||
|
||||
|
Before Width: | Height: | Size: 19 KiB After Width: | Height: | Size: 19 KiB |
Before Width: | Height: | Size: 20 KiB After Width: | Height: | Size: 20 KiB |
Before Width: | Height: | Size: 20 KiB After Width: | Height: | Size: 20 KiB |
Before Width: | Height: | Size: 21 KiB After Width: | Height: | Size: 21 KiB |
Before Width: | Height: | Size: 18 KiB After Width: | Height: | Size: 18 KiB |
Before Width: | Height: | Size: 17 KiB After Width: | Height: | Size: 17 KiB |
Before Width: | Height: | Size: 18 KiB After Width: | Height: | Size: 18 KiB |
Before Width: | Height: | Size: 18 KiB After Width: | Height: | Size: 18 KiB |
Before Width: | Height: | Size: 22 KiB After Width: | Height: | Size: 22 KiB |
Before Width: | Height: | Size: 18 KiB After Width: | Height: | Size: 18 KiB |
@ -12,19 +12,19 @@
|
||||
- **初始化**:传入 $n$ 个顶点,初始化长度为 $n$ 的顶点列表 `vertices` ,使用 $O(n)$ 时间;初始化 $n \times n$ 大小的邻接矩阵 `adjMat` ,使用 $O(n^2)$ 时间。
|
||||
|
||||
=== "初始化邻接矩阵"
|
||||
![邻接矩阵的初始化、增删边、增删顶点](graph_operations.assets/adjacency_matrix_initialization.png)
|
||||
![邻接矩阵的初始化、增删边、增删顶点](graph_operations.assets/adjacency_matrix_step1_initialization.png)
|
||||
|
||||
=== "添加边"
|
||||
![adjacency_matrix_add_edge](graph_operations.assets/adjacency_matrix_add_edge.png)
|
||||
![adjacency_matrix_add_edge](graph_operations.assets/adjacency_matrix_step2_add_edge.png)
|
||||
|
||||
=== "删除边"
|
||||
![adjacency_matrix_remove_edge](graph_operations.assets/adjacency_matrix_remove_edge.png)
|
||||
![adjacency_matrix_remove_edge](graph_operations.assets/adjacency_matrix_step3_remove_edge.png)
|
||||
|
||||
=== "添加顶点"
|
||||
![adjacency_matrix_add_vertex](graph_operations.assets/adjacency_matrix_add_vertex.png)
|
||||
![adjacency_matrix_add_vertex](graph_operations.assets/adjacency_matrix_step4_add_vertex.png)
|
||||
|
||||
=== "删除顶点"
|
||||
![adjacency_matrix_remove_vertex](graph_operations.assets/adjacency_matrix_remove_vertex.png)
|
||||
![adjacency_matrix_remove_vertex](graph_operations.assets/adjacency_matrix_step5_remove_vertex.png)
|
||||
|
||||
以下是基于邻接矩阵表示图的实现代码:
|
||||
|
||||
@ -43,19 +43,19 @@
|
||||
- **初始化**:在邻接表中创建 $n$ 个顶点和 $2m$ 条边,使用 $O(n + m)$ 时间。
|
||||
|
||||
=== "初始化邻接表"
|
||||
![邻接表的初始化、增删边、增删顶点](graph_operations.assets/adjacency_list_initialization.png)
|
||||
![邻接表的初始化、增删边、增删顶点](graph_operations.assets/adjacency_list_step1_initialization.png)
|
||||
|
||||
=== "添加边"
|
||||
![adjacency_list_add_edge](graph_operations.assets/adjacency_list_add_edge.png)
|
||||
![adjacency_list_add_edge](graph_operations.assets/adjacency_list_step2_add_edge.png)
|
||||
|
||||
=== "删除边"
|
||||
![adjacency_list_remove_edge](graph_operations.assets/adjacency_list_remove_edge.png)
|
||||
![adjacency_list_remove_edge](graph_operations.assets/adjacency_list_step3_remove_edge.png)
|
||||
|
||||
=== "添加顶点"
|
||||
![adjacency_list_add_vertex](graph_operations.assets/adjacency_list_add_vertex.png)
|
||||
![adjacency_list_add_vertex](graph_operations.assets/adjacency_list_step4_add_vertex.png)
|
||||
|
||||
=== "删除顶点"
|
||||
![adjacency_list_remove_vertex](graph_operations.assets/adjacency_list_remove_vertex.png)
|
||||
![adjacency_list_remove_vertex](graph_operations.assets/adjacency_list_step5_remove_vertex.png)
|
||||
|
||||
以下是邻接表的代码实现。对比上图,实际代码有以下不同。
|
||||
|
||||
|
Before Width: | Height: | Size: 26 KiB After Width: | Height: | Size: 26 KiB |
Before Width: | Height: | Size: 24 KiB After Width: | Height: | Size: 24 KiB |
Before Width: | Height: | Size: 23 KiB After Width: | Height: | Size: 23 KiB |
Before Width: | Height: | Size: 18 KiB After Width: | Height: | Size: 18 KiB |
Before Width: | Height: | Size: 20 KiB After Width: | Height: | Size: 20 KiB |
Before Width: | Height: | Size: 17 KiB After Width: | Height: | Size: 17 KiB |
Before Width: | Height: | Size: 19 KiB After Width: | Height: | Size: 19 KiB |
Before Width: | Height: | Size: 20 KiB After Width: | Height: | Size: 20 KiB |
Before Width: | Height: | Size: 17 KiB After Width: | Height: | Size: 17 KiB |
Before Width: | Height: | Size: 16 KiB After Width: | Height: | Size: 16 KiB |
@ -347,19 +347,19 @@
|
||||
如下图所示,我们将双向链表的头节点和尾节点视为双向队列的队首和队尾,同时实现在两端添加和删除节点的功能。
|
||||
|
||||
=== "LinkedListDeque"
|
||||
![基于链表实现双向队列的入队出队操作](deque.assets/linkedlist_deque.png)
|
||||
![基于链表实现双向队列的入队出队操作](deque.assets/linkedlist_deque_step1.png)
|
||||
|
||||
=== "push_last()"
|
||||
![linkedlist_deque_push_last](deque.assets/linkedlist_deque_push_last.png)
|
||||
![linkedlist_deque_push_last](deque.assets/linkedlist_deque_step2_push_last.png)
|
||||
|
||||
=== "push_first()"
|
||||
![linkedlist_deque_push_first](deque.assets/linkedlist_deque_push_first.png)
|
||||
![linkedlist_deque_push_first](deque.assets/linkedlist_deque_step3_push_first.png)
|
||||
|
||||
=== "pop_last()"
|
||||
![linkedlist_deque_pop_last](deque.assets/linkedlist_deque_pop_last.png)
|
||||
![linkedlist_deque_pop_last](deque.assets/linkedlist_deque_step4_pop_last.png)
|
||||
|
||||
=== "pop_first()"
|
||||
![linkedlist_deque_pop_first](deque.assets/linkedlist_deque_pop_first.png)
|
||||
![linkedlist_deque_pop_first](deque.assets/linkedlist_deque_step5_pop_first.png)
|
||||
|
||||
实现代码如下所示:
|
||||
|
||||
@ -372,19 +372,19 @@
|
||||
如下图所示,与基于数组实现队列类似,我们也可以使用环形数组来实现双向队列。
|
||||
|
||||
=== "ArrayDeque"
|
||||
![基于数组实现双向队列的入队出队操作](deque.assets/array_deque.png)
|
||||
![基于数组实现双向队列的入队出队操作](deque.assets/array_deque_step1.png)
|
||||
|
||||
=== "push_last()"
|
||||
![array_deque_push_last](deque.assets/array_deque_push_last.png)
|
||||
![array_deque_push_last](deque.assets/array_deque_step2_push_last.png)
|
||||
|
||||
=== "push_first()"
|
||||
![array_deque_push_first](deque.assets/array_deque_push_first.png)
|
||||
![array_deque_push_first](deque.assets/array_deque_step3_push_first.png)
|
||||
|
||||
=== "pop_last()"
|
||||
![array_deque_pop_last](deque.assets/array_deque_pop_last.png)
|
||||
![array_deque_pop_last](deque.assets/array_deque_step4_pop_last.png)
|
||||
|
||||
=== "pop_first()"
|
||||
![array_deque_pop_first](deque.assets/array_deque_pop_first.png)
|
||||
![array_deque_pop_first](deque.assets/array_deque_step5_pop_first.png)
|
||||
|
||||
在队列的实现基础上,仅需增加“队首入队”和“队尾出队”的方法:
|
||||
|
||||
|
Before Width: | Height: | Size: 22 KiB After Width: | Height: | Size: 22 KiB |
Before Width: | Height: | Size: 22 KiB After Width: | Height: | Size: 22 KiB |
Before Width: | Height: | Size: 19 KiB After Width: | Height: | Size: 19 KiB |
Before Width: | Height: | Size: 14 KiB After Width: | Height: | Size: 14 KiB |
Before Width: | Height: | Size: 18 KiB After Width: | Height: | Size: 18 KiB |
Before Width: | Height: | Size: 15 KiB After Width: | Height: | Size: 15 KiB |
@ -321,13 +321,13 @@
|
||||
如下图所示,我们可以将链表的“头节点”和“尾节点”分别视为“队首”和“队尾”,规定队尾仅可添加节点,队首仅可删除节点。
|
||||
|
||||
=== "LinkedListQueue"
|
||||
![基于链表实现队列的入队出队操作](queue.assets/linkedlist_queue.png)
|
||||
![基于链表实现队列的入队出队操作](queue.assets/linkedlist_queue_step1.png)
|
||||
|
||||
=== "push()"
|
||||
![linkedlist_queue_push](queue.assets/linkedlist_queue_push.png)
|
||||
![linkedlist_queue_push](queue.assets/linkedlist_queue_step2_push.png)
|
||||
|
||||
=== "pop()"
|
||||
![linkedlist_queue_pop](queue.assets/linkedlist_queue_pop.png)
|
||||
![linkedlist_queue_pop](queue.assets/linkedlist_queue_step3_pop.png)
|
||||
|
||||
以下是用链表实现队列的代码:
|
||||
|
||||
@ -349,13 +349,13 @@
|
||||
可以看到,入队和出队操作都只需进行一次操作,时间复杂度均为 $O(1)$ 。
|
||||
|
||||
=== "ArrayQueue"
|
||||
![基于数组实现队列的入队出队操作](queue.assets/array_queue.png)
|
||||
![基于数组实现队列的入队出队操作](queue.assets/array_queue_step1.png)
|
||||
|
||||
=== "push()"
|
||||
![array_queue_push](queue.assets/array_queue_push.png)
|
||||
![array_queue_push](queue.assets/array_queue_step2_push.png)
|
||||
|
||||
=== "pop()"
|
||||
![array_queue_pop](queue.assets/array_queue_pop.png)
|
||||
![array_queue_pop](queue.assets/array_queue_step3_pop.png)
|
||||
|
||||
你可能会发现一个问题:在不断进行入队和出队的过程中,`front` 和 `rear` 都在向右移动,**当它们到达数组尾部时就无法继续移动了**。为了解决此问题,我们可以将数组视为首尾相接的“环形数组”。
|
||||
|
||||
|
Before Width: | Height: | Size: 16 KiB After Width: | Height: | Size: 16 KiB |
Before Width: | Height: | Size: 17 KiB After Width: | Height: | Size: 17 KiB |
Before Width: | Height: | Size: 15 KiB After Width: | Height: | Size: 15 KiB |
Before Width: | Height: | Size: 14 KiB After Width: | Height: | Size: 14 KiB |
Before Width: | Height: | Size: 18 KiB After Width: | Height: | Size: 18 KiB |
Before Width: | Height: | Size: 15 KiB After Width: | Height: | Size: 15 KiB |
@ -319,13 +319,13 @@
|
||||
如下图所示,对于入栈操作,我们只需将元素插入链表头部,这种节点插入方法被称为“头插法”。而对于出栈操作,只需将头节点从链表中删除即可。
|
||||
|
||||
=== "LinkedListStack"
|
||||
![基于链表实现栈的入栈出栈操作](stack.assets/linkedlist_stack.png)
|
||||
![基于链表实现栈的入栈出栈操作](stack.assets/linkedlist_stack_step1.png)
|
||||
|
||||
=== "push()"
|
||||
![linkedlist_stack_push](stack.assets/linkedlist_stack_push.png)
|
||||
![linkedlist_stack_push](stack.assets/linkedlist_stack_step2_push.png)
|
||||
|
||||
=== "pop()"
|
||||
![linkedlist_stack_pop](stack.assets/linkedlist_stack_pop.png)
|
||||
![linkedlist_stack_pop](stack.assets/linkedlist_stack_step3_pop.png)
|
||||
|
||||
以下是基于链表实现栈的示例代码:
|
||||
|
||||
@ -338,13 +338,13 @@
|
||||
使用数组实现栈时,我们可以将数组的尾部作为栈顶。如下图所示,入栈与出栈操作分别对应在数组尾部添加元素与删除元素,时间复杂度都为 $O(1)$ 。
|
||||
|
||||
=== "ArrayStack"
|
||||
![基于数组实现栈的入栈出栈操作](stack.assets/array_stack.png)
|
||||
![基于数组实现栈的入栈出栈操作](stack.assets/array_stack_step1.png)
|
||||
|
||||
=== "push()"
|
||||
![array_stack_push](stack.assets/array_stack_push.png)
|
||||
![array_stack_push](stack.assets/array_stack_step2_push.png)
|
||||
|
||||
=== "pop()"
|
||||
![array_stack_pop](stack.assets/array_stack_pop.png)
|
||||
![array_stack_pop](stack.assets/array_stack_step3_pop.png)
|
||||
|
||||
由于入栈的元素可能会源源不断地增加,因此我们可以使用动态数组,这样就无须自行处理数组扩容问题。以下为示例代码:
|
||||
|
||||
|
Before Width: | Height: | Size: 248 KiB |
@ -148,7 +148,7 @@ hide:
|
||||
<img src="https://img.shields.io/badge/C-snow?logo=c&logoColor=A8B9CC">
|
||||
<img src="https://img.shields.io/badge/Zig-snow?logo=zig&logoColor=F7A41D">
|
||||
</div>
|
||||
<p style="margin-top: 2em;">500 幅动画图解、12 种编程语言代码、2000 条社区问答,助你快速入门数据结构与算法</p>
|
||||
<p style="margin-top: 2em;">500 幅动画图解、12 种编程语言代码、3000 条社区问答,助你快速入门数据结构与算法</p>
|
||||
</div>
|
||||
</section>
|
||||
|
||||
|
@ -17,6 +17,19 @@ theme:
|
||||
font:
|
||||
text: Roboto
|
||||
code: Roboto Mono
|
||||
palette:
|
||||
- scheme: default
|
||||
primary: white
|
||||
accent: teal
|
||||
toggle:
|
||||
icon: material/theme-light-dark
|
||||
name: Dark mode
|
||||
- scheme: slate
|
||||
primary: black
|
||||
accent: teal
|
||||
toggle:
|
||||
icon: material/theme-light-dark
|
||||
name: Light mode
|
||||
|
||||
extra:
|
||||
status:
|
||||
|
10
mkdocs.yml
@ -46,16 +46,16 @@ theme:
|
||||
palette:
|
||||
- scheme: default
|
||||
primary: white
|
||||
# accent: indigo
|
||||
accent: teal
|
||||
toggle:
|
||||
icon: material/theme-light-dark
|
||||
name: Switch to dark mode
|
||||
name: 深色模式
|
||||
- scheme: slate
|
||||
primary: grey
|
||||
# accent: indigo
|
||||
primary: black
|
||||
accent: teal
|
||||
toggle:
|
||||
icon: material/theme-light-dark
|
||||
name: Switch to light mode
|
||||
name: 浅色模式
|
||||
font:
|
||||
text: Noto Sans SC
|
||||
code: Fira Code
|
||||
|
Before Width: | Height: | Size: 1.3 KiB After Width: | Height: | Size: 1.3 KiB |
Before Width: | Height: | Size: 3.4 KiB After Width: | Height: | Size: 3.4 KiB |
Before Width: | Height: | Size: 2.9 KiB After Width: | Height: | Size: 2.9 KiB |
@ -8,6 +8,9 @@
|
||||
--md-default-fg-color: #1d1d20;
|
||||
--md-default-bg-color: #ffffff;
|
||||
|
||||
--md-body-bg-color: #22272e;
|
||||
--md-header-bg-color: rgba(255, 255, 255, 0.6);
|
||||
|
||||
--md-code-fg-color: #1d1d20;
|
||||
--md-code-bg-color: #f5f5f5;
|
||||
|
||||
@ -32,6 +35,9 @@
|
||||
--md-default-fg-color: #adbac7;
|
||||
--md-default-bg-color: #22272e;
|
||||
|
||||
--md-body-bg-color: #22272e;
|
||||
--md-header-bg-color: rgba(34, 39, 46, 0.8);
|
||||
|
||||
--md-code-fg-color: #adbac7;
|
||||
--md-code-bg-color: #1d2126;
|
||||
|
||||
@ -42,7 +48,7 @@
|
||||
--md-footer-fg-color: #adbac7;
|
||||
|
||||
--md-typeset-color: #adbac7;
|
||||
--md-typeset-a-color: #52bbb1 !important;
|
||||
--md-typeset-a-color: #52bbb1;
|
||||
|
||||
--md-typeset-btn-color: #52bbb1;
|
||||
--md-typeset-btn-hover-color: #55aea6;
|
||||
@ -50,6 +56,23 @@
|
||||
--md-admonition-pythontutor-color: #30363f;
|
||||
}
|
||||
|
||||
[data-md-color-scheme="slate"][data-md-color-primary="black"],
|
||||
[data-md-color-scheme="slate"][data-md-color-primary="white"] {
|
||||
--md-typeset-a-color: #52bbb1;
|
||||
}
|
||||
|
||||
[data-md-color-primary="black"] .md-header {
|
||||
background-color: var(--md-header-bg-color);
|
||||
}
|
||||
|
||||
.md-header {
|
||||
box-shadow: none;
|
||||
transition: none;
|
||||
backdrop-filter: saturate(180%) blur(20px); /* Gaussian blur */
|
||||
-webkit-backdrop-filter: saturate(180%) blur(20px); /* Safari */
|
||||
background-color: var(--md-header-bg-color);
|
||||
}
|
||||
|
||||
/* https://github.com/squidfunk/mkdocs-material/issues/4832#issuecomment-1374891676 */
|
||||
.md-nav__link[for] {
|
||||
color: var(--md-default-fg-color) !important;
|
||||
@ -400,7 +423,7 @@ a:hover .hero-caption {
|
||||
display: flex;
|
||||
flex-wrap: wrap;
|
||||
justify-content: center;
|
||||
max-width: 720px;
|
||||
max-width: 40em;
|
||||
margin: 1em auto;
|
||||
}
|
||||
|
||||
@ -433,6 +456,17 @@ a:hover .hero-caption {
|
||||
height: 33vw;
|
||||
}
|
||||
|
||||
.contrib-image {
|
||||
width: 100%;
|
||||
}
|
||||
}
|
||||
|
||||
/* Hide table of contents */
|
||||
@media screen and (max-width: 60em) {
|
||||
.home-div {
|
||||
font-size: 0.75rem;
|
||||
}
|
||||
|
||||
.intro-container {
|
||||
flex-direction: column;
|
||||
}
|
||||
@ -454,25 +488,14 @@ a:hover .hero-caption {
|
||||
margin-bottom: 1em;
|
||||
}
|
||||
|
||||
.contrib-image {
|
||||
width: 100%;
|
||||
.text-button {
|
||||
margin: 0.7em auto;
|
||||
}
|
||||
|
||||
.profile-div {
|
||||
max-width: 500px;
|
||||
max-width: 30em;
|
||||
}
|
||||
.profile-cell {
|
||||
flex-basis: 25%;
|
||||
}
|
||||
}
|
||||
|
||||
/* Hide table of contents */
|
||||
@media screen and (max-width: 60em) {
|
||||
.home-div {
|
||||
font-size: 0.75rem;
|
||||
}
|
||||
|
||||
.text-button {
|
||||
margin: 0.7em auto;
|
||||
}
|
||||
}
|
||||
|