Add the section of Graph Traversal.
@ -7,19 +7,13 @@
|
||||
package chapter_graph;
|
||||
|
||||
import java.util.*;
|
||||
|
||||
/* 顶点类 */
|
||||
class Vertex {
|
||||
int val;
|
||||
public Vertex(int val) {
|
||||
this.val = val;
|
||||
}
|
||||
}
|
||||
import include.*;
|
||||
|
||||
/* 基于邻接表实现的无向图类 */
|
||||
class GraphAdjList {
|
||||
// 请注意,vertices 和 adjList 中存储的都是 Vertex 对象
|
||||
Map<Vertex, Set<Vertex>> adjList; // 邻接表(使用哈希表实现)
|
||||
// 邻接表,使用哈希表来代替链表,以提升删除边、删除顶点的效率
|
||||
// 请注意,adjList 中的元素是 Vertex 对象
|
||||
Map<Vertex, List<Vertex>> adjList;
|
||||
|
||||
/* 构造方法 */
|
||||
public GraphAdjList(Vertex[][] edges) {
|
||||
@ -59,26 +53,26 @@ class GraphAdjList {
|
||||
public void addVertex(Vertex vet) {
|
||||
if (adjList.containsKey(vet))
|
||||
return;
|
||||
// 在邻接表中添加一个新链表(即 HashSet)
|
||||
adjList.put(vet, new HashSet<>());
|
||||
// 在邻接表中添加一个新链表
|
||||
adjList.put(vet, new ArrayList<>());
|
||||
}
|
||||
|
||||
/* 删除顶点 */
|
||||
public void removeVertex(Vertex vet) {
|
||||
if (!adjList.containsKey(vet))
|
||||
throw new IllegalArgumentException();
|
||||
// 在邻接表中删除顶点 vet 对应的链表(即 HashSet)
|
||||
// 在邻接表中删除顶点 vet 对应的链表
|
||||
adjList.remove(vet);
|
||||
// 遍历其它顶点的链表(即 HashSet),删除所有包含 vet 的边
|
||||
for (Set<Vertex> set : adjList.values()) {
|
||||
set.remove(vet);
|
||||
// 遍历其它顶点的链表,删除所有包含 vet 的边
|
||||
for (List<Vertex> list : adjList.values()) {
|
||||
list.remove(vet);
|
||||
}
|
||||
}
|
||||
|
||||
/* 打印邻接表 */
|
||||
public void print() {
|
||||
System.out.println("邻接表 =");
|
||||
for (Map.Entry<Vertex, Set<Vertex>> entry : adjList.entrySet()) {
|
||||
for (Map.Entry<Vertex, List<Vertex>> entry : adjList.entrySet()) {
|
||||
List<Integer> tmp = new ArrayList<>();
|
||||
for (Vertex vertex : entry.getValue())
|
||||
tmp.add(vertex.val);
|
||||
@ -90,25 +84,21 @@ class GraphAdjList {
|
||||
public class graph_adjacency_list {
|
||||
public static void main(String[] args) {
|
||||
/* 初始化无向图 */
|
||||
Vertex v0 = new Vertex(1),
|
||||
v1 = new Vertex(3),
|
||||
v2 = new Vertex(2),
|
||||
v3 = new Vertex(5),
|
||||
v4 = new Vertex(4);
|
||||
Vertex[][] edges = { { v0, v1 }, { v1, v2 }, { v2, v3 }, { v0, v3 }, { v2, v4 }, { v3, v4 } };
|
||||
Vertex[] v = Vertex.valsToVets(new int[] { 1, 3, 2, 5, 4 });
|
||||
Vertex[][] edges = { { v[0], v[1] }, { v[0], v[3] }, { v[1], v[2] }, { v[2], v[3] }, { v[2], v[4] }, { v[3], v[4] } };
|
||||
GraphAdjList graph = new GraphAdjList(edges);
|
||||
System.out.println("\n初始化后,图为");
|
||||
graph.print();
|
||||
|
||||
/* 添加边 */
|
||||
// 顶点 1, 2 即 v0, v2
|
||||
graph.addEdge(v0, v2);
|
||||
// 顶点 1, 2 即 v[0], v[2]
|
||||
graph.addEdge(v[0], v[2]);
|
||||
System.out.println("\n添加边 1-2 后,图为");
|
||||
graph.print();
|
||||
|
||||
/* 删除边 */
|
||||
// 顶点 1, 3 即 v0, v1
|
||||
graph.removeEdge(v0, v1);
|
||||
// 顶点 1, 3 即 v[0], v[1]
|
||||
graph.removeEdge(v[0], v[1]);
|
||||
System.out.println("\n删除边 1-3 后,图为");
|
||||
graph.print();
|
||||
|
||||
@ -119,8 +109,8 @@ public class graph_adjacency_list {
|
||||
graph.print();
|
||||
|
||||
/* 删除顶点 */
|
||||
// 顶点 3 即 v1
|
||||
graph.removeVertex(v1);
|
||||
// 顶点 3 即 v[1]
|
||||
graph.removeVertex(v[1]);
|
||||
System.out.println("\n删除顶点 3 后,图为");
|
||||
graph.print();
|
||||
}
|
||||
|
@ -100,7 +100,7 @@ public class graph_adjacency_matrix {
|
||||
/* 初始化无向图 */
|
||||
// 请注意,edges 元素代表顶点索引,即对应 vertices 元素索引
|
||||
int[] vertices = { 1, 3, 2, 5, 4 };
|
||||
int[][] edges = { { 0, 1 }, { 1, 2 }, { 2, 3 }, { 0, 3 }, { 2, 4 }, { 3, 4 } };
|
||||
int[][] edges = { { 0, 1 }, { 0, 3 }, { 1, 2 }, { 2, 3 }, { 2, 4 }, { 3, 4 } };
|
||||
GraphAdjMat graph = new GraphAdjMat(vertices, edges);
|
||||
System.out.println("\n初始化后,图为");
|
||||
graph.print();
|
||||
|
53
codes/java/chapter_graph/graph_bfs.java
Normal file
@ -0,0 +1,53 @@
|
||||
/**
|
||||
* File: graph_bfs.java
|
||||
* Created Time: 2023-02-12
|
||||
* Author: Krahets (krahets@163.com)
|
||||
*/
|
||||
|
||||
package chapter_graph;
|
||||
|
||||
import java.util.*;
|
||||
import include.*;
|
||||
|
||||
public class graph_bfs {
|
||||
/* 广度优先遍历 BFS */
|
||||
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
|
||||
static List<Vertex> graphBFS(GraphAdjList graph, Vertex startVet) {
|
||||
// 顶点遍历序列
|
||||
List<Vertex> res = new ArrayList<>();
|
||||
// 哈希表,用于记录已被访问过的顶点
|
||||
Set<Vertex> visited = new HashSet<>() {{ add(startVet); }};
|
||||
// 队列用于实现 BFS
|
||||
Queue<Vertex> que = new LinkedList<>() {{ offer(startVet); }};
|
||||
// 以顶点 vet 为起点,循环直至访问完所有顶点
|
||||
while (!que.isEmpty()) {
|
||||
Vertex vet = que.poll(); // 队首顶点出队
|
||||
res.add(vet); // 记录访问顶点
|
||||
// 遍历该顶点的所有邻接顶点
|
||||
for (Vertex adjVet : graph.adjList.get(vet)) {
|
||||
if (visited.contains(adjVet))
|
||||
continue; // 跳过已被访问过的顶点
|
||||
que.offer(adjVet); // 只入队未访问的顶点
|
||||
visited.add(adjVet); // 标记该顶点已被访问
|
||||
}
|
||||
}
|
||||
// 返回顶点遍历序列
|
||||
return res;
|
||||
}
|
||||
|
||||
public static void main(String[] args) {
|
||||
/* 初始化无向图 */
|
||||
Vertex[] v = Vertex.valsToVets(new int[] { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 });
|
||||
Vertex[][] edges = { { v[0], v[1] }, { v[0], v[3] }, { v[1], v[2] }, { v[1], v[4] },
|
||||
{ v[2], v[5] }, { v[3], v[4] }, { v[3], v[6] }, { v[4], v[5] },
|
||||
{ v[4], v[7] }, { v[5], v[8] }, { v[6], v[7] }, { v[7], v[8] } };
|
||||
GraphAdjList graph = new GraphAdjList(edges);
|
||||
System.out.println("\n初始化后,图为");
|
||||
graph.print();
|
||||
|
||||
/* 广度优先遍历 BFS */
|
||||
List<Vertex> res = graphBFS(graph, v[0]);
|
||||
System.out.println("\n广度优先遍历(BFS)顶点序列为");
|
||||
System.out.println(Vertex.vetsToVals(res));
|
||||
}
|
||||
}
|
51
codes/java/chapter_graph/graph_dfs.java
Normal file
@ -0,0 +1,51 @@
|
||||
/**
|
||||
* File: graph_dfs.java
|
||||
* Created Time: 2023-02-12
|
||||
* Author: Krahets (krahets@163.com)
|
||||
*/
|
||||
|
||||
package chapter_graph;
|
||||
|
||||
import java.util.*;
|
||||
import include.*;
|
||||
|
||||
public class graph_dfs {
|
||||
/* 深度优先遍历 DFS 辅助函数 */
|
||||
static void dfs(GraphAdjList graph, Set<Vertex> visited, List<Vertex> res, Vertex vet) {
|
||||
res.add(vet); // 记录访问顶点
|
||||
visited.add(vet); // 标记该顶点已被访问
|
||||
// 遍历该顶点的所有邻接顶点
|
||||
for (Vertex adjVet : graph.adjList.get(vet)) {
|
||||
if (visited.contains(adjVet))
|
||||
continue; // 跳过已被访问过的顶点
|
||||
// 递归访问邻接顶点
|
||||
dfs(graph, visited, res, adjVet);
|
||||
}
|
||||
}
|
||||
|
||||
/* 深度优先遍历 DFS */
|
||||
// 使用邻接表来表示图,以便获取指定顶点的所有邻接顶点
|
||||
static List<Vertex> graphDFS(GraphAdjList graph, Vertex startVet) {
|
||||
// 顶点遍历序列
|
||||
List<Vertex> res = new ArrayList<>();
|
||||
// 哈希表,用于记录已被访问过的顶点
|
||||
Set<Vertex> visited = new HashSet<>();
|
||||
dfs(graph, visited, res, startVet);
|
||||
return res;
|
||||
}
|
||||
|
||||
public static void main(String[] args) {
|
||||
/* 初始化无向图 */
|
||||
Vertex[] v = Vertex.valsToVets(new int[] { 0, 1, 2, 3, 4, 5, 6 });
|
||||
Vertex[][] edges = { { v[0], v[1] }, { v[0], v[3] }, { v[1], v[2] },
|
||||
{ v[2], v[5] }, { v[4], v[5] }, { v[5], v[6] } };
|
||||
GraphAdjList graph = new GraphAdjList(edges);
|
||||
System.out.println("\n初始化后,图为");
|
||||
graph.print();
|
||||
|
||||
/* 深度优先遍历 BFS */
|
||||
List<Vertex> res = graphDFS(graph, v[0]);
|
||||
System.out.println("\n深度优先遍历(DFS)顶点序列为");
|
||||
System.out.println(Vertex.vetsToVals(res));
|
||||
}
|
||||
}
|
@ -22,15 +22,15 @@ $$
|
||||
|
||||
根据边是否有方向,分为「无向图 Undirected Graph」和「有向图 Directed Graph」。
|
||||
|
||||
- 在无向图中,边表示两结点之间“双向”的连接关系,例如微信或 QQ 中的“好友关系”;
|
||||
- 在无向图中,边表示两顶点之间“双向”的连接关系,例如微信或 QQ 中的“好友关系”;
|
||||
- 在有向图中,边是有方向的,即 $A \rightarrow B$ 和 $A \leftarrow B$ 两个方向的边是相互独立的,例如微博或抖音上的“关注”与“被关注”关系;
|
||||
|
||||
![directed_graph](graph.assets/directed_graph.png)
|
||||
|
||||
根据所有顶点是否连通,分为「连通图 Connected Graph」和「非连通图 Disconnected Graph」。
|
||||
|
||||
- 对于连通图,从某个结点出发,可以到达其余任意结点;
|
||||
- 对于非连通图,从某个结点出发,至少有一个结点无法到达;
|
||||
- 对于连通图,从某个顶点出发,可以到达其余任意顶点;
|
||||
- 对于非连通图,从某个顶点出发,至少有一个顶点无法到达;
|
||||
|
||||
![connected_graph](graph.assets/connected_graph.png)
|
||||
|
||||
@ -52,6 +52,8 @@ $$
|
||||
|
||||
设图的顶点数量为 $n$ ,「邻接矩阵 Adjacency Matrix」使用一个 $n \times n$ 大小的矩阵来表示图,每一行(列)代表一个顶点,矩阵元素代表边,使用 $1$ 或 $0$ 来表示两个顶点之间有边或无边。
|
||||
|
||||
如下图所示,记邻接矩阵为 $M$ 、顶点列表为 $V$ ,则矩阵元素 $M[i][j] = 1$ 代表着顶点 $V[i]$ 到顶点 $V[j]$ 之间有边,相反地 $M[i][j] = 0$ 代表两顶点之间无边。
|
||||
|
||||
![adjacency_matrix](graph.assets/adjacency_matrix.png)
|
||||
|
||||
邻接矩阵具有以下性质:
|
||||
|
@ -89,7 +89,7 @@ comments: true
|
||||
=== "Zig"
|
||||
|
||||
```zig title="graph_adjacency_matrix.zig"
|
||||
|
||||
|
||||
```
|
||||
|
||||
## 9.2.2. 基于邻接表的实现
|
||||
@ -119,11 +119,17 @@ comments: true
|
||||
|
||||
基于邻接表实现图的代码如下所示。
|
||||
|
||||
!!! question "为什么需要使用顶点类 `Vertex` ?"
|
||||
|
||||
如果我们直接通过顶点值来区分不同顶点,那么值重复的顶点将无法被区分。
|
||||
如果建立一个顶点列表,用索引来区分不同顶点,那么假设我们想要删除索引为 `i` 的顶点,则需要遍历整个邻接表,将其中 $> i$ 的索引全部执行 $-1$ ,这样的操作是比较耗时的。
|
||||
因此,通过引入顶点类 `Vertex` ,每个顶点都是唯一的对象,这样在删除操作时就无需改动其余顶点了。
|
||||
|
||||
=== "Java"
|
||||
|
||||
```java title="graph_adjacency_list.java"
|
||||
[class]{Vertex}-[func]{}
|
||||
|
||||
|
||||
[class]{GraphAdjList}-[func]{}
|
||||
```
|
||||
|
||||
@ -131,7 +137,7 @@ comments: true
|
||||
|
||||
```cpp title="graph_adjacency_list.cpp"
|
||||
[class]{Vertex}-[func]{}
|
||||
|
||||
|
||||
[class]{GraphAdjList}-[func]{}
|
||||
```
|
||||
|
||||
@ -139,7 +145,7 @@ comments: true
|
||||
|
||||
```python title="graph_adjacency_list.py"
|
||||
[class]{Vertex}-[func]{}
|
||||
|
||||
|
||||
[class]{GraphAdjList}-[func]{}
|
||||
```
|
||||
|
||||
@ -147,7 +153,7 @@ comments: true
|
||||
|
||||
```go title="graph_adjacency_list.go"
|
||||
[class]{vertex}-[func]{}
|
||||
|
||||
|
||||
[class]{graphAdjList}-[func]{}
|
||||
```
|
||||
|
||||
@ -155,7 +161,7 @@ comments: true
|
||||
|
||||
```javascript title="graph_adjacency_list.js"
|
||||
[class]{Vertex}-[func]{}
|
||||
|
||||
|
||||
[class]{GraphAdjList}-[func]{}
|
||||
```
|
||||
|
||||
@ -163,7 +169,7 @@ comments: true
|
||||
|
||||
```typescript title="graph_adjacency_list.ts"
|
||||
[class]{Vertex}-[func]{}
|
||||
|
||||
|
||||
[class]{GraphAdjList}-[func]{}
|
||||
```
|
||||
|
||||
@ -171,7 +177,7 @@ comments: true
|
||||
|
||||
```c title="graph_adjacency_list.c"
|
||||
[class]{vertex}-[func]{}
|
||||
|
||||
|
||||
[class]{graphAdjList}-[func]{}
|
||||
```
|
||||
|
||||
@ -179,7 +185,7 @@ comments: true
|
||||
|
||||
```csharp title="graph_adjacency_list.cs"
|
||||
[class]{Vertex}-[func]{}
|
||||
|
||||
|
||||
[class]{GraphAdjList}-[func]{}
|
||||
```
|
||||
|
||||
@ -187,7 +193,7 @@ comments: true
|
||||
|
||||
```swift title="graph_adjacency_list.swift"
|
||||
[class]{Vertex}-[func]{}
|
||||
|
||||
|
||||
[class]{GraphAdjList}-[func]{}
|
||||
```
|
||||
|
||||
@ -195,7 +201,7 @@ comments: true
|
||||
|
||||
```zig title="graph_adjacency_list.zig"
|
||||
[class]{Vertex}-[func]{}
|
||||
|
||||
|
||||
[class]{GraphAdjList}-[func]{}
|
||||
```
|
||||
|
||||
|
BIN
docs/chapter_graph/graph_traversal.assets/graph_bfs.png
Normal file
After Width: | Height: | Size: 75 KiB |
BIN
docs/chapter_graph/graph_traversal.assets/graph_bfs_step1.png
Normal file
After Width: | Height: | Size: 64 KiB |
BIN
docs/chapter_graph/graph_traversal.assets/graph_bfs_step10.png
Normal file
After Width: | Height: | Size: 104 KiB |
BIN
docs/chapter_graph/graph_traversal.assets/graph_bfs_step11.png
Normal file
After Width: | Height: | Size: 83 KiB |
BIN
docs/chapter_graph/graph_traversal.assets/graph_bfs_step2.png
Normal file
After Width: | Height: | Size: 90 KiB |
BIN
docs/chapter_graph/graph_traversal.assets/graph_bfs_step3.png
Normal file
After Width: | Height: | Size: 95 KiB |
BIN
docs/chapter_graph/graph_traversal.assets/graph_bfs_step4.png
Normal file
After Width: | Height: | Size: 97 KiB |
BIN
docs/chapter_graph/graph_traversal.assets/graph_bfs_step5.png
Normal file
After Width: | Height: | Size: 102 KiB |
BIN
docs/chapter_graph/graph_traversal.assets/graph_bfs_step6.png
Normal file
After Width: | Height: | Size: 102 KiB |
BIN
docs/chapter_graph/graph_traversal.assets/graph_bfs_step7.png
Normal file
After Width: | Height: | Size: 102 KiB |
BIN
docs/chapter_graph/graph_traversal.assets/graph_bfs_step8.png
Normal file
After Width: | Height: | Size: 105 KiB |
BIN
docs/chapter_graph/graph_traversal.assets/graph_bfs_step9.png
Normal file
After Width: | Height: | Size: 105 KiB |
BIN
docs/chapter_graph/graph_traversal.assets/graph_dfs.png
Normal file
After Width: | Height: | Size: 80 KiB |
BIN
docs/chapter_graph/graph_traversal.assets/graph_dfs_step1.png
Normal file
After Width: | Height: | Size: 54 KiB |
BIN
docs/chapter_graph/graph_traversal.assets/graph_dfs_step10.png
Normal file
After Width: | Height: | Size: 90 KiB |
BIN
docs/chapter_graph/graph_traversal.assets/graph_dfs_step11.png
Normal file
After Width: | Height: | Size: 102 KiB |
BIN
docs/chapter_graph/graph_traversal.assets/graph_dfs_step2.png
Normal file
After Width: | Height: | Size: 65 KiB |
BIN
docs/chapter_graph/graph_traversal.assets/graph_dfs_step3.png
Normal file
After Width: | Height: | Size: 68 KiB |
BIN
docs/chapter_graph/graph_traversal.assets/graph_dfs_step4.png
Normal file
After Width: | Height: | Size: 71 KiB |
BIN
docs/chapter_graph/graph_traversal.assets/graph_dfs_step5.png
Normal file
After Width: | Height: | Size: 72 KiB |
BIN
docs/chapter_graph/graph_traversal.assets/graph_dfs_step6.png
Normal file
After Width: | Height: | Size: 78 KiB |
BIN
docs/chapter_graph/graph_traversal.assets/graph_dfs_step7.png
Normal file
After Width: | Height: | Size: 77 KiB |
BIN
docs/chapter_graph/graph_traversal.assets/graph_dfs_step8.png
Normal file
After Width: | Height: | Size: 84 KiB |
BIN
docs/chapter_graph/graph_traversal.assets/graph_dfs_step9.png
Normal file
After Width: | Height: | Size: 99 KiB |
@ -4,28 +4,255 @@ comments: true
|
||||
|
||||
# 图的遍历
|
||||
|
||||
与遍历树类似,遍历图也需要通过搜索算法来实现,并也可根据遍历顺序来分为「广度优先遍历 Breadth-First Traversal」和「深度优先遍历 Depth-First Travsersal」,简称分别为 BFS 和 DFS 。
|
||||
!!! note "图与树的关系"
|
||||
|
||||
!!! tip 「树」与「图」的关系
|
||||
树代表的是“一对多”的关系,而图则自由度更高,可以代表任意“多对多”关系。本质上,**可以把树看作是图的一类特例**。那么显然,树遍历操作也是图遍历操作的一个特例,两者的方法是非常类似的,建议你在学习本章节的过程中将两者融会贯通。
|
||||
|
||||
本质上,可以把树看作是图的一种特例,即树是一种限制条件下的图。
|
||||
「图」与「树」都是非线性数据结构,都需要使用「搜索算法」来实现遍历操作。
|
||||
|
||||
类似地,图的遍历方式也分为两种,即「广度优先遍历 Breadth-First Traversal」和「深度优先遍历 Depth-First Travsersal」,也称「广度优先搜索 Breadth-First Search」和「深度优先搜索 Depth-First Search」,简称为 BFS 和 DFS 。
|
||||
|
||||
## 广度优先遍历
|
||||
|
||||
广度优先遍历(BFS)代表一种优先遍历最近的顶点、一层层向外扩张的遍历方式。具体来看,从某个顶点出发,则优先遍历该顶点的所有邻接顶点,随后遍历下个顶点的所有邻接顶点,以此类推……
|
||||
**广度优先遍历优是一种由近及远的遍历方式,从距离最近的顶点开始访问,并一层层向外扩张**。具体地,从某个顶点出发,先遍历该顶点的所有邻接顶点,随后遍历下个顶点的所有邻接顶点,以此类推……
|
||||
|
||||
(图)
|
||||
![graph_bfs](graph_traversal.assets/graph_bfs.png)
|
||||
|
||||
BFS 常借助「队列」来实现,队列具有“先入先出”的性质,这与 BFS 的“由近及远”的遍历方式是异曲同工的。具体地,在每轮迭代中弹出队首顶点且访问之,并将该顶点的所有邻接顶点加入到队列尾部,直到所有顶点访问完成即可。
|
||||
### 算法实现
|
||||
|
||||
为了防止重复遍历顶点,我们需要借助一个 HashSet 来记录哪些结点已被访问,从而避免走“回头路”。
|
||||
BFS 常借助「队列」来实现。队列具有“先入先出”的性质,这与 BFS “由近及远”的思想是异曲同工的。
|
||||
|
||||
```java
|
||||
1. 将遍历起始顶点 `startVet` 加入队列,并开启循环;
|
||||
2. 在循环的每轮迭代中,弹出队首顶点弹出并记录访问,并将该顶点的所有邻接顶点加入到队列尾部;
|
||||
3. 循环 `2.` ,直到所有顶点访问完成后结束。
|
||||
|
||||
```
|
||||
为了防止重复遍历顶点,我们需要借助一个哈希表 `visited` 来记录哪些结点已被访问。
|
||||
|
||||
=== "Java"
|
||||
|
||||
```java title="graph_bfs.java"
|
||||
[class]{graph_bfs}-[func]{graphBFS}
|
||||
```
|
||||
|
||||
=== "C++"
|
||||
|
||||
```cpp title="graph_bfs.cpp"
|
||||
|
||||
```
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python title="graph_bfs.py"
|
||||
|
||||
```
|
||||
|
||||
=== "Go"
|
||||
|
||||
```go title="graph_bfs.go"
|
||||
|
||||
```
|
||||
|
||||
=== "JavaScript"
|
||||
|
||||
```javascript title="graph_bfs.js"
|
||||
|
||||
```
|
||||
|
||||
=== "TypeScript"
|
||||
|
||||
```typescript title="graph_bfs.ts"
|
||||
|
||||
```
|
||||
|
||||
=== "C"
|
||||
|
||||
```c title="graph_bfs.c"
|
||||
|
||||
```
|
||||
|
||||
=== "C#"
|
||||
|
||||
```csharp title="graph_bfs.cs"
|
||||
|
||||
```
|
||||
|
||||
=== "Swift"
|
||||
|
||||
```swift title="graph_bfs.swift"
|
||||
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
||||
```zig title="graph_bfs.zig"
|
||||
|
||||
```
|
||||
|
||||
代码相对抽象,建议对照以下动画图示来加深理解。
|
||||
|
||||
=== "Step 1"
|
||||
![graph_bfs_step1](graph_traversal.assets/graph_bfs_step1.png)
|
||||
|
||||
=== "Step 2"
|
||||
![graph_bfs_step2](graph_traversal.assets/graph_bfs_step2.png)
|
||||
|
||||
=== "Step 3"
|
||||
![graph_bfs_step3](graph_traversal.assets/graph_bfs_step3.png)
|
||||
|
||||
=== "Step 4"
|
||||
![graph_bfs_step4](graph_traversal.assets/graph_bfs_step4.png)
|
||||
|
||||
=== "Step 5"
|
||||
![graph_bfs_step5](graph_traversal.assets/graph_bfs_step5.png)
|
||||
|
||||
=== "Step 6"
|
||||
![graph_bfs_step6](graph_traversal.assets/graph_bfs_step6.png)
|
||||
|
||||
=== "Step 7"
|
||||
![graph_bfs_step7](graph_traversal.assets/graph_bfs_step7.png)
|
||||
|
||||
=== "Step 8"
|
||||
![graph_bfs_step8](graph_traversal.assets/graph_bfs_step8.png)
|
||||
|
||||
=== "Step 9"
|
||||
![graph_bfs_step9](graph_traversal.assets/graph_bfs_step9.png)
|
||||
|
||||
=== "Step 10"
|
||||
![graph_bfs_step10](graph_traversal.assets/graph_bfs_step10.png)
|
||||
|
||||
=== "Step 11"
|
||||
![graph_bfs_step11](graph_traversal.assets/graph_bfs_step11.png)
|
||||
|
||||
!!! question "广度优先遍历的序列是否唯一?"
|
||||
|
||||
不唯一。广度优先遍历只要求“由近及远”,而相同距离的多个顶点的遍历顺序允许任意被打乱。以上图为例,顶点 $1$ , $3$ 的访问顺序可以交换、顶点 $2$ , $4$ , $6$ 的访问顺序也可以任意交换、以此类推……
|
||||
|
||||
### 复杂度分析
|
||||
|
||||
**时间复杂度:** 所有顶点都会入队、出队一次,使用 $O(|V|)$ 时间;在遍历邻接顶点的过程中,由于是无向图,因此所有边都会被访问 $2$ 次,使用 $O(2|E|)$ 时间;总体使用 $O(|V| + |E|)$ 时间。
|
||||
|
||||
**空间复杂度:** 列表 `res` ,哈希表 `visited` ,队列 `que` 中的顶点数量最多为 $|V|$ ,使用 $O(|V|)$ 空间。
|
||||
|
||||
## 深度优先遍历
|
||||
|
||||
深度优先遍历(DFS)代表一种优先走到底,无路可走再回头的遍历方式。从某个顶点出发,首先不断地通过指针向下一个顶点遍历,直到走到头开始回溯,再继续走到底 + 回溯,以此类推……
|
||||
**深度优先遍历是一种优先走到底、无路可走再回头的遍历方式**。具体地,从某个顶点出发,不断地访问当前结点的某个邻接顶点,直到走到尽头时回溯,再继续走到底 + 回溯,以此类推……直至所有顶点遍历完成时结束。
|
||||
|
||||
![graph_dfs](graph_traversal.assets/graph_dfs.png)
|
||||
|
||||
### 算法实现
|
||||
|
||||
这种“走到头 + 回溯”的算法形式一般基于递归来实现。与 BFS 类似,在 DFS 中我们也需要借助一个哈希表 `visited` 来记录已被访问的顶点,以避免重复访问顶点。
|
||||
|
||||
=== "Java"
|
||||
|
||||
```java title="graph_dfs.java"
|
||||
[class]{graph_dfs}-[func]{dfs}
|
||||
|
||||
[class]{graph_dfs}-[func]{graphDFS}
|
||||
```
|
||||
|
||||
=== "C++"
|
||||
|
||||
```cpp title="graph_dfs.cpp"
|
||||
|
||||
```
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python title="graph_dfs.py"
|
||||
|
||||
```
|
||||
|
||||
=== "Go"
|
||||
|
||||
```go title="graph_dfs.go"
|
||||
|
||||
```
|
||||
|
||||
=== "JavaScript"
|
||||
|
||||
```javascript title="graph_dfs.js"
|
||||
|
||||
```
|
||||
|
||||
=== "TypeScript"
|
||||
|
||||
```typescript title="graph_dfs.ts"
|
||||
|
||||
```
|
||||
|
||||
=== "C"
|
||||
|
||||
```c title="graph_dfs.c"
|
||||
|
||||
```
|
||||
|
||||
=== "C#"
|
||||
|
||||
```csharp title="graph_dfs.cs"
|
||||
|
||||
```
|
||||
|
||||
=== "Swift"
|
||||
|
||||
```swift title="graph_dfs.swift"
|
||||
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
||||
```zig title="graph_dfs.zig"
|
||||
|
||||
```
|
||||
|
||||
深度优先遍历的算法流程如下图所示,其中
|
||||
|
||||
- **直虚线代表向下递推**,代表开启了一个新的递归方法来访问新顶点;
|
||||
- **曲虚线代表向上回溯**,代表此递归方法已经返回,回溯到了开启此递归方法的位置;
|
||||
|
||||
为了加深理解,请你将图示与代码结合起来,在脑中(或者用笔画下来)模拟整个 DFS 过程,包括每个递归方法何时开启、何时返回。
|
||||
|
||||
=== "Step 1"
|
||||
![graph_dfs_step1](graph_traversal.assets/graph_dfs_step1.png)
|
||||
|
||||
=== "Step 2"
|
||||
![graph_dfs_step2](graph_traversal.assets/graph_dfs_step2.png)
|
||||
|
||||
=== "Step 3"
|
||||
![graph_dfs_step3](graph_traversal.assets/graph_dfs_step3.png)
|
||||
|
||||
=== "Step 4"
|
||||
![graph_dfs_step4](graph_traversal.assets/graph_dfs_step4.png)
|
||||
|
||||
=== "Step 5"
|
||||
![graph_dfs_step5](graph_traversal.assets/graph_dfs_step5.png)
|
||||
|
||||
=== "Step 6"
|
||||
![graph_dfs_step6](graph_traversal.assets/graph_dfs_step6.png)
|
||||
|
||||
=== "Step 7"
|
||||
![graph_dfs_step7](graph_traversal.assets/graph_dfs_step7.png)
|
||||
|
||||
=== "Step 8"
|
||||
![graph_dfs_step8](graph_traversal.assets/graph_dfs_step8.png)
|
||||
|
||||
=== "Step 9"
|
||||
![graph_dfs_step9](graph_traversal.assets/graph_dfs_step9.png)
|
||||
|
||||
=== "Step 10"
|
||||
![graph_dfs_step10](graph_traversal.assets/graph_dfs_step10.png)
|
||||
|
||||
=== "Step 11"
|
||||
![graph_dfs_step11](graph_traversal.assets/graph_dfs_step11.png)
|
||||
|
||||
!!! question "深度优先遍历的序列是否唯一?"
|
||||
|
||||
与广度优先遍历类似,深度优先遍历序列的顺序也不是唯一的。给定某顶点,先往哪个方向探索都行,都是深度优先遍历。
|
||||
|
||||
以树的遍历为例,“根 $\rightarrow$ 左 $\rightarrow$ 右”、“左 $\rightarrow$ 根 $\rightarrow$ 右”、“左 $\rightarrow$ 右 $\rightarrow$ 根”分别对应前序、中序、后序遍历,体现三种不同的遍历优先级,而三者都属于深度优先遍历。
|
||||
|
||||
### 复杂度分析
|
||||
|
||||
**时间复杂度:** 所有顶点都被访问一次;所有边都被访问了 $2$ 次,使用 $O(2|E|)$ 时间;总体使用 $O(|V| + |E|)$ 时间。
|
||||
|
||||
**空间复杂度:** 列表 `res` ,哈希表 `visited` 顶点数量最多为 $|V|$ ,递归深度最大为 $|V|$ ,因此使用 $O(|V|)$ 空间。
|
||||
|