Merge branch 'krahets:master' into master

This commit is contained in:
Daniel 2022-12-28 21:56:30 +11:00 committed by GitHub
commit bb95d47d8e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
19 changed files with 1421 additions and 55 deletions

View File

@ -0,0 +1,72 @@
/**
* File: bubble_sort.c
* Created Time: 2022-12-26
* Author: Listening (https://github.com/L-Super)
*/
#include "../include/include.h"
/* 冒泡排序 */
void bubble_sort(int nums[], int size)
{
// 外循环:待排序元素数量为 n-1, n-2, ..., 1
for (int i = 0; i < size - 1; i++)
{
// 内循环:冒泡操作
for (int j = 0; j < size - 1 - i; j++)
{
if (nums[j] > nums[j + 1])
{
int temp = nums[j];
nums[j] = nums[j + 1];
nums[j + 1] = temp;
}
}
}
}
/* 冒泡排序(标志优化)*/
void bubble_sort_with_flag(int nums[], int size)
{
// 外循环:待排序元素数量为 n-1, n-2, ..., 1
for (int i = 0; i < size - 1; i++)
{
bool flag = false;
// 内循环:冒泡操作
for (int j = 0; j < size - 1 - i; j++)
{
if (nums[j] > nums[j + 1])
{
int temp = nums[j];
nums[j] = nums[j + 1];
nums[j + 1] = temp;
flag = true;
}
}
if (!flag)
break;
}
}
/* Driver Code */
int main()
{
int nums[6] = {4, 1, 3, 1, 5, 2};
printf("冒泡排序后:\n");
bubble_sort(nums, 6);
for (int i = 0; i < 6; i++)
{
printf("%d ", nums[i]);
}
printf("优化版冒泡排序后:\n");
bubble_sort_with_flag(nums, 6);
for (int i = 0; i < 6; i++)
{
printf("%d ", nums[i]);
}
printf("\n");
return 0;
}

View File

@ -0,0 +1,2 @@
#include <stdio.h>
#include <stdbool.h>

View File

@ -14,9 +14,8 @@ void bubbleSort(vector<int>& nums) {
for (int j = 0; j < i; j++) {
if (nums[j] > nums[j + 1]) {
// 交换 nums[j] 与 nums[j + 1]
int tmp = nums[j];
nums[j] = nums[j + 1];
nums[j + 1] = tmp;
// 这里使用了 std::swap() 函数
swap(nums[j], nums[j + 1]);
}
}
}
@ -31,9 +30,8 @@ void bubbleSortWithFlag(vector<int>& nums) {
for (int j = 0; j < i; j++) {
if (nums[j] > nums[j + 1]) {
// 交换 nums[j] 与 nums[j + 1]
int tmp = nums[j];
nums[j] = nums[j + 1];
nums[j + 1] = tmp;
// 这里使用了 std::swap() 函数
swap(nums[j], nums[j + 1]);
flag = true; // 记录交换元素
}
}

View File

@ -15,12 +15,12 @@ vector<int> hierOrder(TreeNode* root) {
vector<int> vec;
while (!queue.empty()) {
TreeNode* node = queue.front();
queue.pop(); // 队列出队
vec.push_back(node->val); // 保存结点
queue.pop(); // 队列出队
vec.push_back(node->val); // 保存结点
if (node->left != nullptr)
queue.push(node->left); // 左子结点入队
queue.push(node->left); // 左子结点入队
if (node->right != nullptr)
queue.push(node->right); // 右子结点入队
queue.push(node->right); // 右子结点入队
}
return vec;
}

View File

@ -0,0 +1,208 @@
"""
File: avl_tree.py
Created Time: 2022-12-20
Author: a16su (lpluls001@gmail.com)
"""
import sys, os.path as osp
import typing
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from include import *
class AVLTree:
def __init__(self, root: typing.Optional[TreeNode] = None):
self.root = root
""" 获取结点高度 """
def height(self, node: typing.Optional[TreeNode]) -> int:
# 空结点高度为 -1 ,叶结点高度为 0
if node is not None:
return node.height
return -1
""" 更新结点高度 """
def __update_height(self, node: TreeNode):
# 结点高度等于最高子树高度 + 1
node.height = max([self.height(node.left), self.height(node.right)]) + 1
""" 获取平衡因子 """
def balance_factor(self, node: TreeNode) -> int:
# 空结点平衡因子为 0
if node is None:
return 0
# 结点平衡因子 = 左子树高度 - 右子树高度
return self.height(node.left) - self.height(node.right)
""" 右旋操作 """
def __right_rotate(self, node: TreeNode) -> TreeNode:
child = node.left
grand_child = child.right
# 以 child 为原点,将 node 向右旋转
child.right = node
node.left = grand_child
# 更新结点高度
self.__update_height(node)
self.__update_height(child)
# 返回旋转后子树的根节点
return child
""" 左旋操作 """
def __left_rotate(self, node: TreeNode) -> TreeNode:
child = node.right
grand_child = child.left
# 以 child 为原点,将 node 向左旋转
child.left = node
node.right = grand_child
# 更新结点高度
self.__update_height(node)
self.__update_height(child)
# 返回旋转后子树的根节点
return child
""" 执行旋转操作,使该子树重新恢复平衡 """
def __rotate(self, node: TreeNode) -> TreeNode:
# 获取结点 node 的平衡因子
balance_factor = self.balance_factor(node)
# 左偏树
if balance_factor > 1:
if self.balance_factor(node.left) >= 0:
# 右旋
return self.__right_rotate(node)
else:
# 先左旋后右旋
node.left = self.__left_rotate(node.left)
return self.__right_rotate(node)
# 右偏树
elif balance_factor < -1:
if self.balance_factor(node.right) <= 0:
# 左旋
return self.__left_rotate(node)
else:
# 先右旋后左旋
node.right = self.__right_rotate(node.right)
return self.__left_rotate(node)
# 平衡树,无需旋转,直接返回
return node
""" 插入结点 """
def insert(self, val) -> TreeNode:
self.root = self.__insert_helper(self.root, val)
return self.root
""" 递归插入结点(辅助函数)"""
def __insert_helper(self, node: typing.Optional[TreeNode], val: int) -> TreeNode:
if node is None:
return TreeNode(val)
# 1. 查找插入位置,并插入结点
if val < node.val:
node.left = self.__insert_helper(node.left, val)
elif val > node.val:
node.right = self.__insert_helper(node.right, val)
else:
# 重复结点不插入,直接返回
return node
# 更新结点高度
self.__update_height(node)
# 2. 执行旋转操作,使该子树重新恢复平衡
return self.__rotate(node)
""" 删除结点 """
def remove(self, val: int):
root = self.__remove_helper(self.root, val)
return root
""" 递归删除结点(辅助函数) """
def __remove_helper(self, node: typing.Optional[TreeNode], val: int) -> typing.Optional[TreeNode]:
if node is None:
return None
# 1. 查找结点,并删除之
if val < node.val:
node.left = self.__remove_helper(node.left, val)
elif val > node.val:
node.right = self.__remove_helper(node.right, val)
else:
if node.left is None or node.right is None:
child = node.left or node.right
# 子结点数量 = 0 ,直接删除 node 并返回
if child is None:
return None
# 子结点数量 = 1 ,直接删除 node
else:
node = child
else: # 子结点数量 = 2 ,则将中序遍历的下个结点删除,并用该结点替换当前结点
temp = self.__min_node(node.right)
node.right = self.__remove_helper(node.right, temp.val)
node.val = temp.val
# 更新结点高度
self.__update_height(node)
# 2. 执行旋转操作,使该子树重新恢复平衡
return self.__rotate(node)
""" 获取最小结点 """
def __min_node(self, node: typing.Optional[TreeNode]) -> typing.Optional[TreeNode]:
if node is None:
return None
# 循环访问左子结点,直到叶结点时为最小结点,跳出
while node.left is not None:
node = node.left
return node
""" 查找结点 """
def search(self, val: int):
cur = self.root
# 循环查找,越过叶结点后跳出
while cur is not None:
# 目标结点在 root 的右子树中
if cur.val < val:
cur = cur.right
# 目标结点在 root 的左子树中
elif cur.val > val:
cur = cur.left
# 找到目标结点,跳出循环
else:
break
# 返回目标结点
return cur
""" Driver Code """
if __name__ == "__main__":
def test_insert(tree: AVLTree, val: int):
tree.insert(val)
print("\n插入结点 {}AVL 树为".format(val))
print_tree(tree.root)
def test_remove(tree: AVLTree, val: int):
tree.remove(val)
print("\n删除结点 {}AVL 树为".format(val))
print_tree(tree.root)
# 初始化空 AVL 树
avl_tree = AVLTree()
# 插入结点
# 请关注插入结点后AVL 树是如何保持平衡的
test_insert(avl_tree, 1)
test_insert(avl_tree, 2)
test_insert(avl_tree, 3)
test_insert(avl_tree, 4)
test_insert(avl_tree, 5)
test_insert(avl_tree, 8)
test_insert(avl_tree, 7)
test_insert(avl_tree, 9)
test_insert(avl_tree, 10)
test_insert(avl_tree, 6)
# 插入重复结点
test_insert(avl_tree, 7)
# 删除结点
# 请关注删除结点后AVL 树是如何保持平衡的
test_remove(avl_tree, 8) # 删除度为 0 的结点
test_remove(avl_tree, 5) # 删除度为 1 的结点
test_remove(avl_tree, 4) # 删除度为 2 的结点
result_node = avl_tree.search(7)
print("\n查找到的结点对象为 {},结点值 = {}".format(result_node, result_node.val))

View File

@ -1,10 +1,167 @@
"""
File: binary_search_tree.py
Created Time: 2022-11-25
Author: Krahets (krahets@163.com)
Created Time: 2022-12-20
Author: a16su (lpluls001@gmail.com)
"""
import sys, os.path as osp
import typing
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from include import *
""" 二叉搜索树 """
class BinarySearchTree:
def __init__(self, nums: typing.List[int]) -> None:
nums.sort()
self.__root = self.build_tree(nums, 0, len(nums) - 1)
""" 构建二叉搜索树 """
def build_tree(self, nums: typing.List[int], start_index: int, end_index: int) -> typing.Optional[TreeNode]:
if start_index > end_index:
return None
# 将数组中间结点作为根结点
mid = (start_index + end_index) // 2
root = TreeNode(nums[mid])
# 递归建立左子树和右子树
root.left = self.build_tree(nums=nums, start_index=start_index, end_index=mid - 1)
root.right = self.build_tree(nums=nums, start_index=mid + 1, end_index=end_index)
return root
@property
def root(self) -> typing.Optional[TreeNode]:
return self.__root
""" 查找结点 """
def search(self, num: int) -> typing.Optional[TreeNode]:
cur = self.root
# 循环查找,越过叶结点后跳出
while cur is not None:
# 目标结点在 root 的右子树中
if cur.val < num:
cur = cur.right
# 目标结点在 root 的左子树中
elif cur.val > num:
cur = cur.left
# 找到目标结点,跳出循环
else:
break
return cur
""" 插入结点 """
def insert(self, num: int) -> typing.Optional[TreeNode]:
root = self.root
# 若树为空,直接提前返回
if root is None:
return None
cur = root
pre = None
# 循环查找,越过叶结点后跳出
while cur is not None:
# 找到重复结点,直接返回
if cur.val == num:
return None
pre = cur
if cur.val < num: # 插入位置在 root 的右子树中
cur = cur.right
else: # 插入位置在 root 的左子树中
cur = cur.left
# 插入结点 val
node = TreeNode(num)
if pre.val < num:
pre.right = node
else:
pre.left = node
return node
""" 删除结点 """
def remove(self, num: int) -> typing.Optional[TreeNode]:
root = self.root
# 若树为空,直接提前返回
if root is None:
return None
cur = root
pre = None
# 循环查找,越过叶结点后跳出
while cur is not None:
# 找到待删除结点,跳出循环
if cur.val == num:
break
pre = cur
if cur.val < num: # 待删除结点在 root 的右子树中
cur = cur.right
else: # 待删除结点在 root 的左子树中
cur = cur.left
# 若无待删除结点,则直接返回
if cur is None:
return None
# 子结点数量 = 0 or 1
if cur.left is None or cur.right is None:
# 当子结点数量 = 0 / 1 时, child = null / 该子结点
child = cur.left or cur.right
# 删除结点 cur
if pre.left == cur:
pre.left = child
else:
pre.right = child
# 子结点数量 = 2
else:
# 获取中序遍历中 cur 的下一个结点
nex = self.min(cur.right)
tmp = nex.val
# 递归删除结点 nex
self.remove(nex.val)
# 将 nex 的值复制给 cur
cur.val = tmp
return cur
""" 获取最小结点 """
def min(self, root: typing.Optional[TreeNode]) -> typing.Optional[TreeNode]:
if root is None:
return root
# 循环访问左子结点,直到叶结点时为最小结点,跳出
while root.left is not None:
root = root.left
return root
""" Driver Code """
if __name__ == "__main__":
# 初始化二叉搜索树
nums = list(range(1, 16))
bst = BinarySearchTree(nums=nums)
print("\n初始化的二叉树为\n")
print_tree(bst.root)
# 查找结点
node = bst.search(5)
print("\n查找到的结点对象为: {},结点值 = {}".format(node, node.val))
# 插入结点
ndoe = bst.insert(16)
print("\n插入结点 16 后,二叉树为\n")
print_tree(bst.root)
# 删除结点
bst.remove(1)
print("\n删除结点 1 后,二叉树为\n")
print_tree(bst.root)
bst.remove(2)
print("\n删除结点 2 后,二叉树为\n")
print_tree(bst.root)
bst.remove(4)
print("\n删除结点 4 后,二叉树为\n")
print_tree(bst.root)

View File

@ -1,10 +1,40 @@
"""
File: binary_tree.py
Created Time: 2022-11-25
Author: Krahets (krahets@163.com)
Created Time: 2022-12-20
Author: a16su (lpluls001@gmail.com)
"""
import sys, os.path as osp
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from include import *
""" Driver Code """
if __name__ == "__main__":
""" 初始化二叉树 """
# 初始化节点
n1 = TreeNode(val=1)
n2 = TreeNode(val=2)
n3 = TreeNode(val=3)
n4 = TreeNode(val=4)
n5 = TreeNode(val=5)
# 构建引用指向(即指针)
n1.left = n2
n1.right = n3
n2.left = n4
n2.right = n5
print("\n初始化二叉树\n")
print_tree(n1)
""" 插入与删除结点 """
P = TreeNode(0)
# 在 n1 -> n2 中间插入节点 P
n1.left = P
P.left = n2
print("\n插入结点 P 后\n")
print_tree(n1)
# 删除结点
n1.left = n2
print("\n删除结点 P 后\n");
print_tree(n1)

View File

@ -1,10 +1,42 @@
"""
File: binary_tree_bfs.py
Created Time: 2022-11-25
Author: Krahets (krahets@163.com)
Created Time: 2022-12-20
Author: a16su (lpluls001@gmail.com)
"""
import sys, os.path as osp
import typing
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from include import *
""" 层序遍历 """
def hier_order(root: TreeNode):
# 初始化队列,加入根结点
queue = collections.deque()
queue.append(root)
# 初始化一个列表,用于保存遍历序列
res = []
while queue:
node = queue.popleft() # 队列出队
res.append(node.val) # 保存节点值
if node.left is not None:
queue.append(node.left) # 左子结点入队
if node.right is not None:
queue.append(node.right) # 右子结点入队
return res
""" Driver Code """
if __name__ == "__main__":
# 初始化二叉树
# 这里借助了一个从数组直接生成二叉树的函数
root = list_to_tree(arr=[1, 2, 3, 4, 5, 6, 7, None, None, None, None, None, None, None, None])
print("\n初始化二叉树\n")
print_tree(root)
# 层序遍历
res = hier_order(root)
print("\n层序遍历的结点打印序列 = ", res)
assert res == [1, 2, 3, 4, 5, 6, 7]

View File

@ -1,10 +1,68 @@
"""
File: binary_tree_dfs.py
Created Time: 2022-11-25
Author: Krahets (krahets@163.com)
Created Time: 2022-12-20
Author: a16su (lpluls001@gmail.com)
"""
import sys, os.path as osp
import typing
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from include import *
res = []
""" 前序遍历 """
def pre_order(root: typing.Optional[TreeNode]):
if root is None:
return
# 访问优先级:根结点 -> 左子树 -> 右子树
res.append(root.val)
pre_order(root=root.left)
pre_order(root=root.right)
""" 中序遍历 """
def in_order(root: typing.Optional[TreeNode]):
if root is None:
return
# 访问优先级:左子树 -> 根结点 -> 右子树
in_order(root=root.left)
res.append(root.val)
in_order(root=root.right)
""" 后序遍历 """
def post_order(root: typing.Optional[TreeNode]):
if root is None:
return
# 访问优先级:左子树 -> 右子树 -> 根结点
post_order(root=root.left)
post_order(root=root.right)
res.append(root.val)
""" Driver Code """
if __name__ == "__main__":
# 初始化二叉树
# 这里借助了一个从数组直接生成二叉树的函数
root = list_to_tree(arr=[1, 2, 3, 4, 5, 6, 7, None, None, None, None, None, None, None, None])
print("\n初始化二叉树\n")
print_tree(root)
# 前序遍历
res.clear()
pre_order(root)
print("\n前序遍历的结点打印序列 = ", res)
assert res == [1, 2, 4, 5, 3, 6, 7]
# 中序遍历
res.clear()
in_order(root)
print("\n中序遍历的结点打印序列 = ", res)
assert res == [4, 2, 5, 1, 6, 3, 7]
# 后序遍历
res.clear()
post_order(root)
print("\n后序遍历的结点打印序列 = ", res)
assert res == [4, 5, 2, 6, 7, 3, 1]

View File

@ -10,9 +10,19 @@ class TreeNode:
"""Definition for a binary tree node
"""
def __init__(self, val=0, left=None, right=None):
self.val = val
self.left = left
self.right = right
self.val = val # 结点值
self.height = 0 # 结点高度
self.left = left # 左子结点引用
self.right = right # 右子结点引用
def __str__(self):
val = self.val
left_node_val = self.left.val if self.left else None
right_node_val = self.right.val if self.right else None
return "<TreeNode: {}, leftTreeNode: {}, rightTreeNode: {}>".format(val, left_node_val, right_node_val)
__repr__ = __str__
def list_to_tree(arr):
"""Generate a binary tree with a list

View File

@ -0,0 +1,170 @@
/*
* File: time_complexity.swift
* Created Time: 2022-12-26
* Author: nuomi1 (nuomi1@qq.com)
*/
//
func constant(n: Int) -> Int {
var count = 0
let size = 100_000
for _ in 0 ..< size {
count += 1
}
return count
}
// 线
func linear(n: Int) -> Int {
var count = 0
for _ in 0 ..< n {
count += 1
}
return count
}
// 线
func arrayTraversal(nums: [Int]) -> Int {
var count = 0
//
for _ in nums {
count += 1
}
return count
}
//
func quadratic(n: Int) -> Int {
var count = 0
//
for _ in 0 ..< n {
for _ in 0 ..< n {
count += 1
}
}
return count
}
//
func bubbleSort(nums: inout [Int]) -> Int {
var count = 0 //
// n-1, n-2, ..., 1
for i in sequence(first: nums.count - 1, next: { $0 > 0 ? $0 - 1 : nil }) {
//
for j in 0 ..< i {
if nums[j] > nums[j + 1] {
// nums[j] nums[j + 1]
let tmp = nums[j]
nums[j] = nums[j + 1]
nums[j + 1] = tmp
count += 3 // 3
}
}
}
return count
}
//
func exponential(n: Int) -> Int {
var count = 0
var base = 1
// cell 1, 2, 4, 8, ..., 2^(n-1)
for _ in 0 ..< n {
for _ in 0 ..< base {
count += 1
}
base *= 2
}
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
return count
}
//
func expRecur(n: Int) -> Int {
if n == 1 {
return 1
}
return expRecur(n: n - 1) + expRecur(n: n - 1) + 1
}
//
func logarithmic(n: Int) -> Int {
var count = 0
var n = n
while n > 1 {
n = n / 2
count += 1
}
return count
}
//
func logRecur(n: Int) -> Int {
if n <= 1 {
return 0
}
return logRecur(n: n / 2) + 1
}
// 线
func linearLogRecur(n: Double) -> Int {
if n <= 1 {
return 1
}
var count = linearLogRecur(n: n / 2) + linearLogRecur(n: n / 2)
for _ in 0 ..< Int(n) {
count += 1
}
return count
}
//
func factorialRecur(n: Int) -> Int {
if n == 0 {
return 1
}
var count = 0
// 1 n
for _ in 0 ..< n {
count += factorialRecur(n: n - 1)
}
return count
}
func main() {
// n
let n = 8
print("输入数据大小 n =", n)
var count = constant(n: n)
print("常数阶的计算操作数量 =", count)
count = linear(n: n)
print("线性阶的计算操作数量 =", count)
count = arrayTraversal(nums: Array(repeating: 0, count: n))
print("线性阶(遍历数组)的计算操作数量 =", count)
count = quadratic(n: n)
print("平方阶的计算操作数量 =", count)
var nums = Array(sequence(first: n, next: { $0 > 0 ? $0 - 1 : nil })) // [n,n-1,...,2,1]
count = bubbleSort(nums: &nums)
print("平方阶(冒泡排序)的计算操作数量 =", count)
count = exponential(n: n)
print("指数阶(循环实现)的计算操作数量 =", count)
count = expRecur(n: n)
print("指数阶(递归实现)的计算操作数量 =", count)
count = logarithmic(n: n)
print("对数阶(循环实现)的计算操作数量 =", count)
count = logRecur(n: n)
print("对数阶(递归实现)的计算操作数量 =", count)
count = linearLogRecur(n: Double(n))
print("线性对数阶(递归实现)的计算操作数量 =", count)
count = factorialRecur(n: n)
print("阶乘阶(递归实现)的计算操作数量 =", count)
}
main()

View File

@ -0,0 +1,37 @@
/*
* File: worst_best_time_complexity.swift
* Created Time: 2022-12-26
* Author: nuomi1 (nuomi1@qq.com)
*/
// { 1, 2, ..., n }
func randomNumbers(n: Int) -> [Int] {
// nums = { 1, 2, 3, ..., n }
var nums = Array(1 ... n)
//
nums.shuffle()
return nums
}
// nums 1
func findOne(nums: [Int]) -> Int {
for i in nums.indices {
if nums[i] == 1 {
return i
}
}
return -1
}
// Driver Code
func main() {
for _ in 0 ..< 10 {
let n = 100
let nums = randomNumbers(n: n)
let index = findOne(nums: nums)
print("数组 [ 1, 2, ..., n ] 被打乱后 =", nums)
print("数字 1 的索引为", index)
}
}
main()

View File

@ -111,6 +111,21 @@ $$
}
```
=== "Swift"
```swift title=""
// 在某运行平台下
func algorithm(_ n: Int) {
var a = 2 // 1 ns
a = a + 1 // 1 ns
a = a * 2 // 10 ns
// 循环 n 次
for _ in 0 ..< n { // 1 ns
print(0) // 5 ns
}
}
```
但实际上, **统计算法的运行时间既不合理也不现实。** 首先,我们不希望预估时间和运行平台绑定,毕竟算法需要跑在各式各样的平台之上。其次,我们很难获知每一种操作的运行时间,这为预估过程带来了极大的难度。
## 统计时间增长趋势
@ -246,6 +261,29 @@ $$
}
```
=== "Swift"
```swift title=""
// 算法 A 时间复杂度:常数阶
func algorithmA(_ n: Int) {
print(0)
}
// 算法 B 时间复杂度:线性阶
func algorithmB(_ n: Int) {
for _ in 0 ..< n {
print(0)
}
}
// 算法 C 时间复杂度:常数阶
func algorithmC(_ n: Int) {
for _ in 0 ..< 1000000 {
print(0)
}
}
```
![time_complexity_first_example](time_complexity.assets/time_complexity_first_example.png)
<p align="center"> Fig. 算法 A, B, C 的时间增长趋势 </p>
@ -352,6 +390,20 @@ $$
}
```
=== "Swift"
```swift title=""
func algorithm(n: Int) {
var a = 1 // +1
a = a + 1 // +1
a = a * 2 // +1
// 循环 n 次
for _ in 0 ..< n { // +1
print(0) // +1
}
}
```
$T(n)$ 是个一次函数,说明时间增长趋势是线性的,因此易得时间复杂度是线性阶。
我们将线性阶的时间复杂度记为 $O(n)$ ,这个数学符号被称为「大 $O$ 记号 Big-$O$ Notation」代表函数 $T(n)$ 的「渐近上界 asymptotic upper bound」。
@ -516,6 +568,25 @@ $$
}
```
=== "Swift"
```swift title=""
func algorithm(n: Int) {
var a = 1 // +0技巧 1
a = a + n // +0技巧 1
// +n技巧 2
for _ in 0 ..< (5 * n + 1) {
print(0)
}
// +n*n技巧 3
for _ in 0 ..< (2 * n) {
for _ in 0 ..< (n + 1) {
print(0)
}
}
}
```
### 2. 判断渐近上界
**时间复杂度由多项式 $T(n)$ 中最高阶的项来决定**。这是因为在 $n$ 趋于无穷大时,最高阶的项将处于主导作用,其它项的影响都可以被忽略。
@ -643,6 +714,20 @@ $$
}
```
=== "Swift"
```swift title="time_complexity.swift"
// 常数阶
func constant(n: Int) -> Int {
var count = 0
let size = 100000
for _ in 0 ..< size {
count += 1
}
return count
}
```
### 线性阶 $O(n)$
线性阶的操作数量相对输入数据大小成线性级别增长。线性阶常出现于单层循环。
@ -726,6 +811,19 @@ $$
}
```
=== "Swift"
```swift title="time_complexity.swift"
// 线性阶
func linear(n: Int) -> Int {
var count = 0
for _ in 0 ..< n {
count += 1
}
return count
}
```
「遍历数组」和「遍历链表」等操作,时间复杂度都为 $O(n)$ ,其中 $n$ 为数组或链表的长度。
!!! tip
@ -820,6 +918,20 @@ $$
}
```
=== "Swift"
```swift title="time_complexity.swift"
// 线性阶(遍历数组)
func arrayTraversal(nums: [Int]) -> Int {
var count = 0
// 循环次数与数组长度成正比
for _ in nums {
count += 1
}
return count
}
```
### 平方阶 $O(n^2)$
平方阶的操作数量相对输入数据大小成平方级别增长。平方阶常出现于嵌套循环,外层循环和内层循环都为 $O(n)$ ,总体为 $O(n^2)$ 。
@ -922,6 +1034,22 @@ $$
}
```
=== "Swift"
```swift title="time_complexity.swift"
// 平方阶
func quadratic(n: Int) -> Int {
var count = 0
// 循环次数与数组长度成平方关系
for _ in 0 ..< n {
for _ in 0 ..< n {
count += 1
}
}
return count
}
```
![time_complexity_constant_linear_quadratic](time_complexity.assets/time_complexity_constant_linear_quadratic.png)
<p align="center"> Fig. 常数阶、线性阶、平方阶的时间复杂度 </p>
@ -1066,6 +1194,29 @@ $$
```
=== "Swift"
```swift title="time_complexity.swift"
// 平方阶(冒泡排序)
func bubbleSort(nums: inout [Int]) -> Int {
var count = 0 // 计数器
// 外循环:待排序元素数量为 n-1, n-2, ..., 1
for i in sequence(first: nums.count - 1, next: { $0 > 0 ? $0 - 1 : nil }) {
// 内循环:冒泡操作
for j in 0 ..< i {
if nums[j] > nums[j + 1] {
// 交换 nums[j] 与 nums[j + 1]
let tmp = nums[j]
nums[j] = nums[j + 1]
nums[j + 1] = tmp
count += 3 // 元素交换包含 3 个单元操作
}
}
}
return count
}
```
### 指数阶 $O(2^n)$
!!! note
@ -1182,6 +1333,25 @@ $$
}
```
=== "Swift"
```swift title="time_complexity.swift"
// 指数阶(循环实现)
func exponential(n: Int) -> Int {
var count = 0
var base = 1
// cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
for _ in 0 ..< n {
for _ in 0 ..< base {
count += 1
}
base *= 2
}
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
return count
}
```
![time_complexity_exponential](time_complexity.assets/time_complexity_exponential.png)
<p align="center"> Fig. 指数阶的时间复杂度 </p>
@ -1258,6 +1428,18 @@ $$
}
```
=== "Swift"
```swift title="time_complexity.swift"
// 指数阶(递归实现)
func expRecur(n: Int) -> Int {
if n == 1 {
return 1
}
return expRecur(n: n - 1) + expRecur(n: n - 1) + 1
}
```
### 对数阶 $O(\log n)$
对数阶与指数阶正好相反,后者反映“每轮增加到两倍的情况”,而前者反映“每轮缩减到一半的情况”。对数阶仅次于常数阶,时间增长的很慢,是理想的时间复杂度。
@ -1354,6 +1536,21 @@ $$
}
```
=== "Swift"
```swift title="time_complexity.swift"
// 对数阶(循环实现)
func logarithmic(n: Int) -> Int {
var count = 0
var n = n
while n > 1 {
n = n / 2
count += 1
}
return count
}
```
![time_complexity_logarithmic](time_complexity.assets/time_complexity_logarithmic.png)
<p align="center"> Fig. 对数阶的时间复杂度 </p>
@ -1430,6 +1627,18 @@ $$
}
```
=== "Swift"
```swift title="time_complexity.swift"
// 对数阶(递归实现)
func logRecur(n: Int) -> Int {
if n <= 1 {
return 0
}
return logRecur(n: n / 2) + 1
}
```
### 线性对数阶 $O(n \log n)$
线性对数阶常出现于嵌套循环中,两层循环的时间复杂度分别为 $O(\log n)$ 和 $O(n)$ 。
@ -1531,6 +1740,22 @@ $$
}
```
=== "Swift"
```swift title="time_complexity.swift"
// 线性对数阶
func linearLogRecur(n: Double) -> Int {
if n <= 1 {
return 1
}
var count = linearLogRecur(n: n / 2) + linearLogRecur(n: n / 2)
for _ in 0 ..< Int(n) {
count += 1
}
return count
}
```
![time_complexity_logarithmic_linear](time_complexity.assets/time_complexity_logarithmic_linear.png)
<p align="center"> Fig. 线性对数阶的时间复杂度 </p>
@ -1640,6 +1865,23 @@ $$
}
```
=== "Swift"
```swift title="time_complexity.swift"
// 阶乘阶(递归实现)
func factorialRecur(n: Int) -> Int {
if n == 0 {
return 1
}
var count = 0
// 从 1 个分裂出 n 个
for _ in 0 ..< n {
count += factorialRecur(n: n - 1)
}
return count
}
```
![time_complexity_factorial](time_complexity.assets/time_complexity_factorial.png)
<p align="center"> Fig. 阶乘阶的时间复杂度 </p>
@ -1872,6 +2114,40 @@ $$
}
```
=== "Swift"
```swift title=""
// 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱
func randomNumbers(n: Int) -> [Int] {
// 生成数组 nums = { 1, 2, 3, ..., n }
var nums = Array(1 ... n)
// 随机打乱数组元素
nums.shuffle()
return nums
}
// 查找数组 nums 中数字 1 所在索引
func findOne(nums: [Int]) -> Int {
for i in nums.indices {
if nums[i] == 1 {
return i
}
}
return -1
}
// Driver Code
func main() {
for _ in 0 ..< 10 {
let n = 100
let nums = randomNumbers(n: n)
let index = findOne(nums: nums)
print("数组 [ 1, 2, ..., n ] 被打乱后 =", nums)
print("数字 1 的索引为", index)
}
}
```
!!! tip
我们在实际应用中很少使用「最佳时间复杂度」,因为往往只有很小概率下才能达到,会带来一定的误导性。反之,「最差时间复杂度」最为实用,因为它给出了一个“效率安全值”,让我们可以放心地使用算法。

View File

@ -41,3 +41,8 @@ comments: true
1. 下载并安装 [.Net 6.0](https://dotnet.microsoft.com/en-us/download)
2. 在 VSCode 的插件市场中搜索 `c#` ,安装 c# 。
## Swift 环境
1. 下载并安装 [Swift](https://www.swift.org/download/)
2. 在 VSCode 的插件市场中搜索 `swift`,安装 [Swift for Visual Studio Code](https://marketplace.visualstudio.com/items?itemName=sswg.swift-lang)。

View File

@ -85,9 +85,8 @@ comments: true
for (int j = 0; j < i; j++) {
if (nums[j] > nums[j + 1]) {
// 交换 nums[j] 与 nums[j + 1]
int tmp = nums[j];
nums[j] = nums[j + 1];
nums[j + 1] = tmp;
// 这里使用了 std::swap() 函数
swap(nums[j], nums[j + 1]);
}
}
}
@ -170,7 +169,24 @@ comments: true
=== "C"
```c title="bubble_sort.c"
/* 冒泡排序 */
void bubble_sort(int nums[], int size)
{
// 外循环:待排序元素数量为 n-1, n-2, ..., 1
for (int i = 0; i < size - 1; i++)
{
// 内循环:冒泡操作
for (int j = 0; j < size - 1 - i; j++)
{
if (nums[j] > nums[j + 1])
{
int temp = nums[j];
nums[j] = nums[j + 1];
nums[j + 1] = temp;
}
}
}
}
```
=== "C#"
@ -250,9 +266,8 @@ comments: true
for (int j = 0; j < i; j++) {
if (nums[j] > nums[j + 1]) {
// 交换 nums[j] 与 nums[j + 1]
int tmp = nums[j];
nums[j] = nums[j + 1];
nums[j + 1] = tmp;
// 这里使用了 std::swap() 函数
swap(nums[j], nums[j + 1]);
flag = true; // 记录交换元素
}
}
@ -352,7 +367,27 @@ comments: true
=== "C"
```c title="bubble_sort.c"
/* 冒泡排序 */
void bubble_sort(int nums[], int size)
{
// 外循环:待排序元素数量为 n-1, n-2, ..., 1
for (int i = 0; i < size - 1; i++)
{
bool flag = false;
// 内循环:冒泡操作
for (int j = 0; j < size - 1 - i; j++)
{
if (nums[j] > nums[j + 1])
{
int temp = nums[j];
nums[j] = nums[j + 1];
nums[j + 1] = temp;
flag = true;
}
}
if(!flag) break;
}
}
```
=== "C#"

View File

@ -48,7 +48,13 @@ G. M. Adelson-Velsky 和 E. M. Landis 在其 1962 年发表的论文 "An algorit
=== "Python"
```python title="avl_tree.py"
""" AVL 树结点类 """
class TreeNode:
def __init__(self, val=None, left=None, right=None):
self.val = val # 结点值
self.height = 0 # 结点高度
self.left = left # 左子结点引用
self.right = right # 右子结点引用
```
=== "Go"
@ -115,7 +121,17 @@ G. M. Adelson-Velsky 和 E. M. Landis 在其 1962 年发表的论文 "An algorit
=== "Python"
```python title="avl_tree.py"
""" 获取结点高度 """
def height(self, node: typing.Optional[TreeNode]) -> int:
# 空结点高度为 -1 ,叶结点高度为 0
if node is not None:
return node.height
return -1
""" 更新结点高度 """
def __update_height(self, node: TreeNode):
# 结点高度等于最高子树高度 + 1
node.height = max([self.height(node.left), self.height(node.right)]) + 1
```
=== "Go"
@ -185,7 +201,13 @@ G. M. Adelson-Velsky 和 E. M. Landis 在其 1962 年发表的论文 "An algorit
=== "Python"
```python title="avl_tree.py"
""" 获取平衡因子 """
def balance_factor(self, node: TreeNode) -> int:
# 空结点平衡因子为 0
if node is None:
return 0
# 结点平衡因子 = 左子树高度 - 右子树高度
return self.height(node.left) - self.height(node.right)
```
=== "Go"
@ -281,7 +303,18 @@ AVL 树的独特之处在于「旋转 Rotation」的操作其可 **在不影
=== "Python"
```python title="avl_tree.py"
""" 右旋操作 """
def __right_rotate(self, node: TreeNode) -> TreeNode:
child = node.left
grand_child = child.right
# 以 child 为原点,将 node 向右旋转
child.right = node
node.left = grand_child
# 更新结点高度
self.__update_height(node)
self.__update_height(child)
# 返回旋转后子树的根节点
return child
```
=== "Go"
@ -363,7 +396,18 @@ AVL 树的独特之处在于「旋转 Rotation」的操作其可 **在不影
=== "Python"
```python title="avl_tree.py"
""" 左旋操作 """
def __left_rotate(self, node: TreeNode) -> TreeNode:
child = node.right
grand_child = child.left
# 以 child 为原点,将 node 向左旋转
child.left = node
node.right = grand_child
# 更新结点高度
self.__update_height(node)
self.__update_height(child)
# 返回旋转后子树的根节点
return child
```
=== "Go"
@ -485,7 +529,30 @@ AVL 树的独特之处在于「旋转 Rotation」的操作其可 **在不影
=== "Python"
```python title="avl_tree.py"
""" 执行旋转操作,使该子树重新恢复平衡 """
def __rotate(self, node: TreeNode) -> TreeNode:
# 获取结点 node 的平衡因子
balance_factor = self.balance_factor(node)
# 左偏树
if balance_factor > 1:
if self.balance_factor(node.left) >= 0:
# 右旋
return self.__right_rotate(node)
else:
# 先左旋后右旋
node.left = self.__left_rotate(node.left)
return self.__right_rotate(node)
# 右偏树
elif balance_factor < -1:
if self.balance_factor(node.right) <= 0:
# 左旋
return self.__left_rotate(node)
else:
# 先右旋后左旋
node.right = self.__right_rotate(node.right)
return self.__left_rotate(node)
# 平衡树,无需旋转,直接返回
return node
```
=== "Go"
@ -597,7 +664,27 @@ AVL 树的独特之处在于「旋转 Rotation」的操作其可 **在不影
=== "Python"
```python title="avl_tree.py"
""" 插入结点 """
def insert(self, val) -> TreeNode:
self.root = self.__insert_helper(self.root, val)
return self.root
""" 递归插入结点(辅助函数)"""
def __insert_helper(self, node: typing.Optional[TreeNode], val: int) -> TreeNode:
if node is None:
return TreeNode(val)
# 1. 查找插入位置,并插入结点
if val < node.val:
node.left = self.__insert_helper(node.left, val)
elif val > node.val:
node.right = self.__insert_helper(node.right, val)
else:
# 重复结点不插入,直接返回
return node
# 更新结点高度
self.__update_height(node)
# 2. 执行旋转操作,使该子树重新恢复平衡
return self.__rotate(node)
```
=== "Go"
@ -717,7 +804,46 @@ AVL 树的独特之处在于「旋转 Rotation」的操作其可 **在不影
=== "Python"
```python title="avl_tree.py"
""" 删除结点 """
def remove(self, val: int):
root = self.__remove_helper(self.root, val)
return root
""" 递归删除结点(辅助函数) """
def __remove_helper(self, node: typing.Optional[TreeNode], val: int) -> typing.Optional[TreeNode]:
if node is None:
return None
# 1. 查找结点,并删除之
if val < node.val:
node.left = self.__remove_helper(node.left, val)
elif val > node.val:
node.right = self.__remove_helper(node.right, val)
else:
if node.left is None or node.right is None:
child = node.left or node.right
# 子结点数量 = 0 ,直接删除 node 并返回
if child is None:
return None
# 子结点数量 = 1 ,直接删除 node
else:
node = child
else: # 子结点数量 = 2 ,则将中序遍历的下个结点删除,并用该结点替换当前结点
temp = self.min_node(node.right)
node.right = self.__remove_helper(node.right, temp.val)
node.val = temp.val
# 更新结点高度
self.__update_height(node)
# 2. 执行旋转操作,使该子树重新恢复平衡
return self.__rotate(node)
""" 获取最小结点 """
def min_node(self, node: typing.Optional[TreeNode]) -> typing.Optional[TreeNode]:
if node is None:
return None
# 循环访问左子结点,直到叶结点时为最小结点,跳出
while node.left is not None:
node = node.left
return node
```
=== "Go"

View File

@ -82,7 +82,21 @@ comments: true
=== "Python"
```python title="binary_search_tree.py"
""" 查找结点 """
def search(self, num: int) -> typing.Optional[TreeNode]:
cur = self.root
# 循环查找,越过叶结点后跳出
while cur is not None:
# 目标结点在 root 的右子树中
if cur.val < num:
cur = cur.right
# 目标结点在 root 的左子树中
elif cur.val > num:
cur = cur.left
# 找到目标结点,跳出循环
else:
break
return cur
```
=== "Go"
@ -244,7 +258,35 @@ comments: true
=== "Python"
```python title="binary_search_tree.py"
""" 插入结点 """
def insert(self, num: int) -> typing.Optional[TreeNode]:
root = self.root
# 若树为空,直接提前返回
if root is None:
return None
cur = root
pre = None
# 循环查找,越过叶结点后跳出
while cur is not None:
# 找到重复结点,直接返回
if cur.val == num:
return None
pre = cur
if cur.val < num: # 插入位置在 root 的右子树中
cur = cur.right
else: # 插入位置在 root 的左子树中
cur = cur.left
# 插入结点 val
node = TreeNode(num)
if pre.val < num:
pre.right = node
else:
pre.left = node
return node
```
=== "Go"
@ -525,7 +567,60 @@ comments: true
=== "Python"
```python title="binary_search_tree.py"
""" 删除结点 """
def remove(self, num: int) -> typing.Optional[TreeNode]:
root = self.root
# 若树为空,直接提前返回
if root is None:
return None
cur = root
pre = None
# 循环查找,越过叶结点后跳出
while cur is not None:
# 找到待删除结点,跳出循环
if cur.val == num:
break
pre = cur
if cur.val < num: # 待删除结点在 root 的右子树中
cur = cur.right
else: # 待删除结点在 root 的左子树中
cur = cur.left
# 若无待删除结点,则直接返回
if cur is None:
return None
# 子结点数量 = 0 or 1
if cur.left is None or cur.right is None:
# 当子结点数量 = 0 / 1 时, child = null / 该子结点
child = cur.left or cur.right
# 删除结点 cur
if pre.left == cur:
pre.left = child
else:
pre.right = child
# 子结点数量 = 2
else:
# 获取中序遍历中 cur 的下一个结点
nex = self.min(cur.right)
tmp = nex.val
# 递归删除结点 nex
self.remove(nex.val)
# 将 nex 的值复制给 cur
cur.val = tmp
return cur
""" 获取最小结点 """
def min(self, root: typing.Optional[TreeNode]) -> typing.Optional[TreeNode]:
if root is None:
return root
# 循环访问左子结点,直到叶结点时为最小结点,跳出
while root.left is not None:
root = root.left
return root
```
=== "Go"
@ -761,14 +856,14 @@ comments: true
- **查找元素:** 由于数组是无序的,因此需要遍历数组来确定,使用 $O(n)$ 时间;
- **插入元素:** 只需将元素添加至数组尾部即可,使用 $O(1)$ 时间;
- **删除元素:** 先查找元素,使用 $O(\log n)$ 时间,再在数组中删除该元素,使用 $O(n)$ 时间;
- **删除元素:** 先查找元素,使用 $O(n)$ 时间,再在数组中删除该元素,使用 $O(n)$ 时间;
- **获取最小 / 最大元素:** 需要遍历数组来确定,使用 $O(n)$ 时间;
为了得到先验信息,我们也可以预先将数组元素进行排序,得到一个「排序数组」,此时操作效率为:
- **查找元素:** 由于数组已排序,可以使用二分查找,使用 $O(\log n)$ 时间;
- **插入元素:** 为了保持数组是有序的,需插入到数组某位置,平均使用 $O(n)$ 时间;
- **删除元素:** 与无序数组中的情况相同,使用 $O(n)$ 时间;
- **查找元素:** 由于数组已排序,可以使用二分查找,平均使用 $O(\log n)$ 时间;
- **插入元素:** 先查找插入位置,使用 $O(\log n)$ 时间,再插入到指定位置,使用 $O(n)$ 时间;
- **删除元素:** 先查找元素,使用 $O(\log n)$ 时间,再在数组中删除该元素,使用 $O(n)$ 时间;
- **获取最小 / 最大元素:** 数组头部和尾部元素即是最小和最大元素,使用 $O(1)$ 时间;
观察发现,无序数组和有序数组中的各项操作的时间复杂度是“偏科”的,即有的快有的慢;**而二叉搜索树的各项操作的时间复杂度都是对数阶,在数据量 $n$ 很大时有巨大优势**。

View File

@ -35,7 +35,7 @@ comments: true
```python title=""
""" 链表结点类 """
class TreeNode:
def __init__(self, val=0, left=None, right=None):
def __init__(self, val=None, left=None, right=None):
self.val = val # 结点值
self.left = left # 左子结点指针
self.right = right # 右子结点指针
@ -44,13 +44,13 @@ comments: true
=== "Go"
```go title=""
""" 链表结点类 """
// 链表结点类
type TreeNode struct {
Val int
Left *TreeNode
Right *TreeNode
}
""" 结点初始化方法 """
// 结点初始化方法
func NewTreeNode(v int) *TreeNode {
return &TreeNode{
Left: nil,
@ -175,7 +175,18 @@ comments: true
=== "Python"
```python title="binary_tree.py"
""" 初始化二叉树 """
# 初始化节点
n1 = TreeNode(val=1)
n2 = TreeNode(val=2)
n3 = TreeNode(val=3)
n4 = TreeNode(val=4)
n5 = TreeNode(val=5)
# 构建引用指向(即指针)
n1.left = n2
n1.right = n3
n2.left = n4
n2.right = n5
```
=== "Go"
@ -284,7 +295,13 @@ comments: true
=== "Python"
```python title="binary_tree.py"
""" 插入与删除结点 """
p = TreeNode(0)
# 在 n1 -> n2 中间插入结点 P
n1.left = p
p.left = n2
# 删除节点 P
n1.left = n2
```
=== "Go"
@ -437,7 +454,7 @@ comments: true
=== "Python"
```python title=""
“”“ 二叉树的数组表示 ”“”
""" 二叉树的数组表示 """
# 直接使用 None 来表示空位
tree = [1, 2, 3, 4, None, 6, 7, 8, 9, None, None, 12, None, None, 15]
```

View File

@ -51,12 +51,12 @@ comments: true
vector<int> vec;
while (!queue.empty()) {
TreeNode* node = queue.front();
queue.pop(); // 队列出队
vec.push_back(node->val); // 保存结点
queue.pop(); // 队列出队
vec.push_back(node->val); // 保存结点
if (node->left != nullptr)
queue.push(node->left); // 左子结点入队
queue.push(node->left); // 左子结点入队
if (node->right != nullptr)
queue.push(node->right); // 右子结点入队
queue.push(node->right); // 右子结点入队
}
return vec;
}
@ -65,7 +65,21 @@ comments: true
=== "Python"
```python title="binary_tree_bfs.py"
""" 层序遍历 """
def hier_order(root: TreeNode):
# 初始化队列,加入根结点
queue = collections.deque()
queue.append(root)
# 初始化一个列表,用于保存遍历序列
res = []
while queue:
node = queue.popleft() # 队列出队
res.append(node.val) # 保存节点值
if node.left is not None:
queue.append(node.left) # 左子结点入队
if node.right is not None:
queue.append(node.right) # 右子结点入队
return res
```
=== "Go"
@ -256,7 +270,32 @@ comments: true
=== "Python"
```python title="binary_tree_dfs.py"
""" 前序遍历 """
def pre_order(root: typing.Optional[TreeNode]):
if root is None:
return
# 访问优先级:根结点 -> 左子树 -> 右子树
res.append(root.val)
pre_order(root=root.left)
pre_order(root=root.right)
""" 中序遍历 """
def in_order(root: typing.Optional[TreeNode]):
if root is None:
return
# 访问优先级:左子树 -> 根结点 -> 右子树
in_order(root=root.left)
res.append(root.val)
in_order(root=root.right)
""" 后序遍历 """
def post_order(root: typing.Optional[TreeNode]):
if root is None:
return
# 访问优先级:左子树 -> 右子树 -> 根结点
post_order(root=root.left)
post_order(root=root.right)
res.append(root.val)
```
=== "Go"
@ -402,7 +441,6 @@ comments: true
postOrder(root.right);
list.Add(root.val);
}
```
!!! note