Add JavaScript and TypeScript code of permutations and n_queens (Chapter of Backtracking) (#494)

* Add JavaScript and TypeScript code of permutations and n_queens (Chapter of Backtracking)

* Update n_queens.js

* Update permutations_i.js

* Update permutations_ii.js

* Update n_queens.ts

* Update permutations_i.ts

* Update permutations_ii.ts

---------

Co-authored-by: Yudong Jin <krahets@163.com>
This commit is contained in:
Justin Tse 2023-05-14 01:18:40 +08:00 committed by GitHub
parent 01345c23ca
commit b52a98f178
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 306 additions and 0 deletions

View File

@ -0,0 +1,55 @@
/**
* File: n_queens.js
* Created Time: 2023-05-13
* Author: Justin (xiefahit@gmail.com)
*/
/* 回溯算法N 皇后 */
function backtrack(row, n, state, res, cols, diags1, diags2) {
// 当放置完所有行时,记录解
if (row === n) {
res.push(state.map((row) => row.slice()));
return;
}
// 遍历所有列
for (let col = 0; col < n; col++) {
// 计算该格子对应的主对角线和副对角线
const diag1 = row - col + n - 1;
const diag2 = row + col;
// 剪枝:不允许该格子所在 (列 或 主对角线 或 副对角线) 包含皇后
if (!(cols[col] || diags1[diag1] || diags2[diag2])) {
// 尝试:将皇后放置在该格子
state[row][col] = 'Q';
cols[col] = diags1[diag1] = diags2[diag2] = true;
// 放置下一行
backtrack(row + 1, n, state, res, cols, diags1, diags2);
// 回退:将该格子恢复为空位
state[row][col] = '#';
cols[col] = diags1[diag1] = diags2[diag2] = false;
}
}
}
/* 求解 N 皇后 */
function nQueens(n) {
// 初始化 n*n 大小的棋盘,其中 'Q' 代表皇后,'#' 代表空位
const state = Array.from({ length: n }, () => Array(n).fill('#'));
const cols = Array(n).fill(false); // 记录列是否有皇后
const diags1 = Array(2 * n - 1).fill(false); // 记录主对角线是否有皇后
const diags2 = Array(2 * n - 1).fill(false); // 记录副对角线是否有皇后
const res = [];
backtrack(0, n, state, res, cols, diags1, diags2);
return res;
}
// Driver Code
const n = 4;
const res = nQueens(n);
console.log(`输入棋盘长宽为 ${n}`);
console.log(`皇后放置方案共有 ${res.length}`);
res.forEach((state) => {
console.log('--------------------');
state.forEach((row) => console.log(row));
});

View File

@ -0,0 +1,42 @@
/**
* File: permutations_i.js
* Created Time: 2023-05-13
* Author: Justin (xiefahit@gmail.com)
*/
/* 回溯算法:全排列 I */
function backtrack(state, choices, selected, res) {
// 当状态长度等于元素数量时,记录解
if (state.length === choices.length) {
res.push([...state]);
return;
}
// 遍历所有选择
choices.forEach((choice, i) => {
// 剪枝:不允许重复选择元素 且 不允许重复选择相等元素
if (!selected[i]) {
// 尝试:做出选择,更新状态
selected[i] = true;
state.push(choice);
// 进行下一轮选择
backtrack(state, choices, selected, res);
// 回退:撤销选择,恢复到之前的状态
selected[i] = false;
state.pop();
}
});
}
/* 全排列 I */
function permutationsI(nums) {
const res = [];
backtrack([], nums, Array(nums.length).fill(false), res);
return res;
}
// Driver Code
const nums = [1, 2, 3];
const res = permutationsI(nums);
console.log(`输入数组 nums = ${JSON.stringify(nums)}`);
console.log(`所有排列 res = ${JSON.stringify(res)}`);

View File

@ -0,0 +1,44 @@
/**
* File: permutations_ii.js
* Created Time: 2023-05-13
* Author: Justin (xiefahit@gmail.com)
*/
/* 回溯算法:全排列 II */
function backtrack(state, choices, selected, res) {
// 当状态长度等于元素数量时,记录解
if (state.length === choices.length) {
res.push([...state]);
return;
}
// 遍历所有选择
const duplicated = new Set();
choices.forEach((choice, i) => {
// 剪枝:不允许重复选择元素 且 不允许重复选择相等元素
if (!selected[i] && !duplicated.has(choice)) {
// 尝试:做出选择,更新状态
duplicated.add(choice); // 记录选择过的元素值
selected[i] = true;
state.push(choice);
// 进行下一轮选择
backtrack(state, choices, selected, res);
// 回退:撤销选择,恢复到之前的状态
selected[i] = false;
state.pop();
}
});
}
/* 全排列 II */
function permutationsII(nums) {
const res = [];
backtrack([], nums, Array(nums.length).fill(false), res);
return res;
}
// Driver Code
const nums = [1, 2, 2];
const res = permutationsII(nums);
console.log(`输入数组 nums = ${JSON.stringify(nums)}`);
console.log(`所有排列 res = ${JSON.stringify(res)}`);

View File

@ -0,0 +1,65 @@
/**
* File: n_queens.ts
* Created Time: 2023-05-13
* Author: Justin (xiefahit@gmail.com)
*/
/* 回溯算法N 皇后 */
function backtrack(
row: number,
n: number,
state: string[][],
res: string[][][],
cols: boolean[],
diags1: boolean[],
diags2: boolean[]
): void {
// 当放置完所有行时,记录解
if (row === n) {
res.push(state.map((row) => row.slice()));
return;
}
// 遍历所有列
for (let col = 0; col < n; col++) {
// 计算该格子对应的主对角线和副对角线
const diag1 = row - col + n - 1;
const diag2 = row + col;
// 剪枝:不允许该格子所在 (列 或 主对角线 或 副对角线) 包含皇后
if (!(cols[col] || diags1[diag1] || diags2[diag2])) {
// 尝试:将皇后放置在该格子
state[row][col] = 'Q';
cols[col] = diags1[diag1] = diags2[diag2] = true;
// 放置下一行
backtrack(row + 1, n, state, res, cols, diags1, diags2);
// 回退:将该格子恢复为空位
state[row][col] = '#';
cols[col] = diags1[diag1] = diags2[diag2] = false;
}
}
}
/* 求解 N 皇后 */
function nQueens(n: number): string[][][] {
// 初始化 n*n 大小的棋盘,其中 'Q' 代表皇后,'#' 代表空位
const state = Array.from({ length: n }, () => Array(n).fill('#'));
const cols = Array(n).fill(false); // 记录列是否有皇后
const diags1 = Array(2 * n - 1).fill(false); // 记录主对角线是否有皇后
const diags2 = Array(2 * n - 1).fill(false); // 记录副对角线是否有皇后
const res: string[][][] = [];
backtrack(0, n, state, res, cols, diags1, diags2);
return res;
}
// Driver Code
const n = 4;
const res = nQueens(n);
console.log(`输入棋盘长宽为 ${n}`);
console.log(`皇后放置方案共有 ${res.length}`);
res.forEach((state) => {
console.log('--------------------');
state.forEach((row) => console.log(row));
});
export {};

View File

@ -0,0 +1,49 @@
/**
* File: permutations_i.ts
* Created Time: 2023-05-13
* Author: Justin (xiefahit@gmail.com)
*/
/* 回溯算法:全排列 I */
function backtrack(
state: number[],
choices: number[],
selected: boolean[],
res: number[][]
): void {
// 当状态长度等于元素数量时,记录解
if (state.length === choices.length) {
res.push([...state]);
return;
}
// 遍历所有选择
choices.forEach((choice, i) => {
// 剪枝:不允许重复选择元素 且 不允许重复选择相等元素
if (!selected[i]) {
// 尝试:做出选择,更新状态
selected[i] = true;
state.push(choice);
// 进行下一轮选择
backtrack(state, choices, selected, res);
// 回退:撤销选择,恢复到之前的状态
selected[i] = false;
state.pop();
}
});
}
/* 全排列 I */
function permutationsI(nums: number[]): number[][] {
const res: number[][] = [];
backtrack([], nums, Array(nums.length).fill(false), res);
return res;
}
// Driver Code
const nums: number[] = [1, 2, 3];
const res: number[][] = permutationsI(nums);
console.log(`输入数组 nums = ${JSON.stringify(nums)}`);
console.log(`所有排列 res = ${JSON.stringify(res)}`);
export {};

View File

@ -0,0 +1,51 @@
/**
* File: permutations_ii.ts
* Created Time: 2023-05-13
* Author: Justin (xiefahit@gmail.com)
*/
/* 回溯算法:全排列 II */
function backtrack(
state: number[],
choices: number[],
selected: boolean[],
res: number[][]
): void {
// 当状态长度等于元素数量时,记录解
if (state.length === choices.length) {
res.push([...state]);
return;
}
// 遍历所有选择
const duplicated = new Set();
choices.forEach((choice, i) => {
// 剪枝:不允许重复选择元素 且 不允许重复选择相等元素
if (!selected[i] && !duplicated.has(choice)) {
// 尝试:做出选择,更新状态
duplicated.add(choice); // 记录选择过的元素值
selected[i] = true;
state.push(choice);
// 进行下一轮选择
backtrack(state, choices, selected, res);
// 回退:撤销选择,恢复到之前的状态
selected[i] = false;
state.pop();
}
});
}
/* 全排列 II */
function permutationsII(nums: number[]): number[][] {
const res: number[][] = [];
backtrack([], nums, Array(nums.length).fill(false), res);
return res;
}
// Driver Code
const nums: number[] = [1, 2, 2];
const res: number[][] = permutationsII(nums);
console.log(`输入数组 nums = ${JSON.stringify(nums)}`);
console.log(`所有排列 res = ${JSON.stringify(res)}`);
export {};