mirror of
https://github.com/krahets/hello-algo.git
synced 2025-02-02 22:43:50 +08:00
Feature/chapter dynamic programming swift (#608)
* feat: add Swift codes for intro_to_dynamic_programming article * feat: add Swift codes for dp_problem_features article * feat: add Swift codes for dp_solution_pipeline article * feat: add Swift codes for knapsack_problem article * feat: add Swift codes for unbounded_knapsack_problem article * feat: add Swift codes for edit_distance_problem article
This commit is contained in:
parent
34985bdf2b
commit
9ea8a73059
@ -72,6 +72,19 @@ let package = Package(
|
||||
.executable(name: "subset_sum_i", targets: ["subset_sum_i"]),
|
||||
.executable(name: "subset_sum_ii", targets: ["subset_sum_ii"]),
|
||||
.executable(name: "n_queens", targets: ["n_queens"]),
|
||||
// chapter_dynamic_programming
|
||||
.executable(name: "climbing_stairs_backtrack", targets: ["climbing_stairs_backtrack"]),
|
||||
.executable(name: "climbing_stairs_dfs", targets: ["climbing_stairs_dfs"]),
|
||||
.executable(name: "climbing_stairs_dfs_mem", targets: ["climbing_stairs_dfs_mem"]),
|
||||
.executable(name: "climbing_stairs_dp", targets: ["climbing_stairs_dp"]),
|
||||
.executable(name: "min_cost_climbing_stairs_dp", targets: ["min_cost_climbing_stairs_dp"]),
|
||||
.executable(name: "climbing_stairs_constraint_dp", targets: ["climbing_stairs_constraint_dp"]),
|
||||
.executable(name: "min_path_sum", targets: ["min_path_sum"]),
|
||||
.executable(name: "knapsack", targets: ["knapsack"]),
|
||||
.executable(name: "unbounded_knapsack", targets: ["unbounded_knapsack"]),
|
||||
.executable(name: "coin_change", targets: ["coin_change"]),
|
||||
.executable(name: "coin_change_ii", targets: ["coin_change_ii"]),
|
||||
.executable(name: "edit_distance", targets: ["edit_distance"]),
|
||||
],
|
||||
targets: [
|
||||
// helper
|
||||
@ -144,5 +157,18 @@ let package = Package(
|
||||
.executableTarget(name: "subset_sum_i", path: "chapter_backtracking", sources: ["subset_sum_i.swift"]),
|
||||
.executableTarget(name: "subset_sum_ii", path: "chapter_backtracking", sources: ["subset_sum_ii.swift"]),
|
||||
.executableTarget(name: "n_queens", path: "chapter_backtracking", sources: ["n_queens.swift"]),
|
||||
// chapter_dynamic_programming
|
||||
.executableTarget(name: "climbing_stairs_backtrack", path: "chapter_dynamic_programming", sources: ["climbing_stairs_backtrack.swift"]),
|
||||
.executableTarget(name: "climbing_stairs_dfs", path: "chapter_dynamic_programming", sources: ["climbing_stairs_dfs.swift"]),
|
||||
.executableTarget(name: "climbing_stairs_dfs_mem", path: "chapter_dynamic_programming", sources: ["climbing_stairs_dfs_mem.swift"]),
|
||||
.executableTarget(name: "climbing_stairs_dp", path: "chapter_dynamic_programming", sources: ["climbing_stairs_dp.swift"]),
|
||||
.executableTarget(name: "min_cost_climbing_stairs_dp", path: "chapter_dynamic_programming", sources: ["min_cost_climbing_stairs_dp.swift"]),
|
||||
.executableTarget(name: "climbing_stairs_constraint_dp", path: "chapter_dynamic_programming", sources: ["climbing_stairs_constraint_dp.swift"]),
|
||||
.executableTarget(name: "min_path_sum", path: "chapter_dynamic_programming", sources: ["min_path_sum.swift"]),
|
||||
.executableTarget(name: "knapsack", path: "chapter_dynamic_programming", sources: ["knapsack.swift"]),
|
||||
.executableTarget(name: "unbounded_knapsack", path: "chapter_dynamic_programming", sources: ["unbounded_knapsack.swift"]),
|
||||
.executableTarget(name: "coin_change", path: "chapter_dynamic_programming", sources: ["coin_change.swift"]),
|
||||
.executableTarget(name: "coin_change_ii", path: "chapter_dynamic_programming", sources: ["coin_change_ii.swift"]),
|
||||
.executableTarget(name: "edit_distance", path: "chapter_dynamic_programming", sources: ["edit_distance.swift"]),
|
||||
]
|
||||
)
|
||||
|
@ -0,0 +1,42 @@
|
||||
/**
|
||||
* File: climbing_stairs_backtrack.swift
|
||||
* Created Time: 2023-07-15
|
||||
* Author: nuomi1 (nuomi1@qq.com)
|
||||
*/
|
||||
|
||||
/* 回溯 */
|
||||
func backtrack(choices: [Int], state: Int, n: Int, res: inout [Int]) {
|
||||
// 当爬到第 n 阶时,方案数量加 1
|
||||
if state == n {
|
||||
res[0] += 1
|
||||
}
|
||||
// 遍历所有选择
|
||||
for choice in choices {
|
||||
// 剪枝:不允许越过第 n 阶
|
||||
if state + choice > n {
|
||||
break
|
||||
}
|
||||
backtrack(choices: choices, state: state + choice, n: n, res: &res)
|
||||
}
|
||||
}
|
||||
|
||||
/* 爬楼梯:回溯 */
|
||||
func climbingStairsBacktrack(n: Int) -> Int {
|
||||
let choices = [1, 2] // 可选择向上爬 1 或 2 阶
|
||||
let state = 0 // 从第 0 阶开始爬
|
||||
var res: [Int] = []
|
||||
res.append(0) // 使用 res[0] 记录方案数量
|
||||
backtrack(choices: choices, state: state, n: n, res: &res)
|
||||
return res[0]
|
||||
}
|
||||
|
||||
@main
|
||||
enum ClimbingStairsBacktrack {
|
||||
/* Driver Code */
|
||||
static func main() {
|
||||
let n = 9
|
||||
|
||||
let res = climbingStairsBacktrack(n: n)
|
||||
print("爬 \(n) 阶楼梯共有 \(res) 种方案")
|
||||
}
|
||||
}
|
@ -0,0 +1,36 @@
|
||||
/**
|
||||
* File: climbing_stairs_constraint_dp.swift
|
||||
* Created Time: 2023-07-15
|
||||
* Author: nuomi1 (nuomi1@qq.com)
|
||||
*/
|
||||
|
||||
/* 带约束爬楼梯:动态规划 */
|
||||
func climbingStairsConstraintDP(n: Int) -> Int {
|
||||
if n == 1 || n == 2 {
|
||||
return n
|
||||
}
|
||||
// 初始化 dp 表,用于存储子问题的解
|
||||
var dp = Array(repeating: Array(repeating: 0, count: 3), count: n + 1)
|
||||
// 初始状态:预设最小子问题的解
|
||||
dp[1][1] = 1
|
||||
dp[1][2] = 0
|
||||
dp[2][1] = 0
|
||||
dp[2][2] = 1
|
||||
// 状态转移:从较小子问题逐步求解较大子问题
|
||||
for i in stride(from: 3, through: n, by: 1) {
|
||||
dp[i][1] = dp[i - 1][2]
|
||||
dp[i][2] = dp[i - 2][1] + dp[i - 2][2]
|
||||
}
|
||||
return dp[n][1] + dp[n][2]
|
||||
}
|
||||
|
||||
@main
|
||||
enum ClimbingStairsConstraintDP {
|
||||
/* Driver Code */
|
||||
static func main() {
|
||||
let n = 9
|
||||
|
||||
let res = climbingStairsConstraintDP(n: n)
|
||||
print("爬 \(n) 阶楼梯共有 \(res) 种方案")
|
||||
}
|
||||
}
|
@ -0,0 +1,32 @@
|
||||
/**
|
||||
* File: climbing_stairs_dfs.swift
|
||||
* Created Time: 2023-07-15
|
||||
* Author: nuomi1 (nuomi1@qq.com)
|
||||
*/
|
||||
|
||||
/* 搜索 */
|
||||
func dfs(i: Int) -> Int {
|
||||
// 已知 dp[1] 和 dp[2] ,返回之
|
||||
if i == 1 || i == 2 {
|
||||
return i
|
||||
}
|
||||
// dp[i] = dp[i-1] + dp[i-2]
|
||||
let count = dfs(i: i - 1) + dfs(i: i - 2)
|
||||
return count
|
||||
}
|
||||
|
||||
/* 爬楼梯:搜索 */
|
||||
func climbingStairsDFS(n: Int) -> Int {
|
||||
dfs(i: n)
|
||||
}
|
||||
|
||||
@main
|
||||
enum ClimbingStairsDFS {
|
||||
/* Driver Code */
|
||||
static func main() {
|
||||
let n = 9
|
||||
|
||||
let res = climbingStairsDFS(n: n)
|
||||
print("爬 \(n) 阶楼梯共有 \(res) 种方案")
|
||||
}
|
||||
}
|
@ -0,0 +1,40 @@
|
||||
/**
|
||||
* File: climbing_stairs_dfs_mem.swift
|
||||
* Created Time: 2023-07-15
|
||||
* Author: nuomi1 (nuomi1@qq.com)
|
||||
*/
|
||||
|
||||
/* 记忆化搜索 */
|
||||
func dfs(i: Int, mem: inout [Int]) -> Int {
|
||||
// 已知 dp[1] 和 dp[2] ,返回之
|
||||
if i == 1 || i == 2 {
|
||||
return i
|
||||
}
|
||||
// 若存在记录 dp[i] ,则直接返回之
|
||||
if mem[i] != -1 {
|
||||
return mem[i]
|
||||
}
|
||||
// dp[i] = dp[i-1] + dp[i-2]
|
||||
let count = dfs(i: i - 1, mem: &mem) + dfs(i: i - 2, mem: &mem)
|
||||
// 记录 dp[i]
|
||||
mem[i] = count
|
||||
return count
|
||||
}
|
||||
|
||||
/* 爬楼梯:记忆化搜索 */
|
||||
func climbingStairsDFSMem(n: Int) -> Int {
|
||||
// mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录
|
||||
var mem = Array(repeating: -1, count: n + 1)
|
||||
return dfs(i: n, mem: &mem)
|
||||
}
|
||||
|
||||
@main
|
||||
enum ClimbingStairsDFSMem {
|
||||
/* Driver Code */
|
||||
static func main() {
|
||||
let n = 9
|
||||
|
||||
let res = climbingStairsDFSMem(n: n)
|
||||
print("爬 \(n) 阶楼梯共有 \(res) 种方案")
|
||||
}
|
||||
}
|
@ -0,0 +1,49 @@
|
||||
/**
|
||||
* File: climbing_stairs_dp.swift
|
||||
* Created Time: 2023-07-15
|
||||
* Author: nuomi1 (nuomi1@qq.com)
|
||||
*/
|
||||
|
||||
/* 爬楼梯:动态规划 */
|
||||
func climbingStairsDP(n: Int) -> Int {
|
||||
if n == 1 || n == 2 {
|
||||
return n
|
||||
}
|
||||
// 初始化 dp 表,用于存储子问题的解
|
||||
var dp = Array(repeating: 0, count: n + 1)
|
||||
// 初始状态:预设最小子问题的解
|
||||
dp[1] = 1
|
||||
dp[2] = 2
|
||||
// 状态转移:从较小子问题逐步求解较大子问题
|
||||
for i in stride(from: 3, through: n, by: 1) {
|
||||
dp[i] = dp[i - 1] + dp[i - 2]
|
||||
}
|
||||
return dp[n]
|
||||
}
|
||||
|
||||
/* 爬楼梯:状态压缩后的动态规划 */
|
||||
func climbingStairsDPComp(n: Int) -> Int {
|
||||
if n == 1 || n == 2 {
|
||||
return n
|
||||
}
|
||||
var a = 1
|
||||
var b = 2
|
||||
for _ in stride(from: 3, through: n, by: 1) {
|
||||
(a, b) = (b, a + b)
|
||||
}
|
||||
return b
|
||||
}
|
||||
|
||||
@main
|
||||
enum ClimbingStairsDP {
|
||||
/* Driver Code */
|
||||
static func main() {
|
||||
let n = 9
|
||||
|
||||
var res = climbingStairsDP(n: n)
|
||||
print("爬 \(n) 阶楼梯共有 \(res) 种方案")
|
||||
|
||||
res = climbingStairsDPComp(n: n)
|
||||
print("爬 \(n) 阶楼梯共有 \(res) 种方案")
|
||||
}
|
||||
}
|
69
codes/swift/chapter_dynamic_programming/coin_change.swift
Normal file
69
codes/swift/chapter_dynamic_programming/coin_change.swift
Normal file
@ -0,0 +1,69 @@
|
||||
/**
|
||||
* File: coin_change.swift
|
||||
* Created Time: 2023-07-15
|
||||
* Author: nuomi1 (nuomi1@qq.com)
|
||||
*/
|
||||
|
||||
/* 零钱兑换:动态规划 */
|
||||
func coinChangeDP(coins: [Int], amt: Int) -> Int {
|
||||
let n = coins.count
|
||||
let MAX = amt + 1
|
||||
// 初始化 dp 表
|
||||
var dp = Array(repeating: Array(repeating: 0, count: amt + 1), count: n + 1)
|
||||
// 状态转移:首行首列
|
||||
for a in stride(from: 1, through: amt, by: 1) {
|
||||
dp[0][a] = MAX
|
||||
}
|
||||
// 状态转移:其余行列
|
||||
for i in stride(from: 1, through: n, by: 1) {
|
||||
for a in stride(from: 1, through: amt, by: 1) {
|
||||
if coins[i - 1] > a {
|
||||
// 若超过背包容量,则不选硬币 i
|
||||
dp[i][a] = dp[i - 1][a]
|
||||
} else {
|
||||
// 不选和选硬币 i 这两种方案的较小值
|
||||
dp[i][a] = min(dp[i - 1][a], dp[i][a - coins[i - 1]] + 1)
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[n][amt] != MAX ? dp[n][amt] : -1
|
||||
}
|
||||
|
||||
/* 零钱兑换:状态压缩后的动态规划 */
|
||||
func coinChangeDPComp(coins: [Int], amt: Int) -> Int {
|
||||
let n = coins.count
|
||||
let MAX = amt + 1
|
||||
// 初始化 dp 表
|
||||
var dp = Array(repeating: MAX, count: amt + 1)
|
||||
dp[0] = 0
|
||||
// 状态转移
|
||||
for i in stride(from: 1, through: n, by: 1) {
|
||||
for a in stride(from: 1, through: amt, by: 1) {
|
||||
if coins[i - 1] > a {
|
||||
// 若超过背包容量,则不选硬币 i
|
||||
dp[a] = dp[a]
|
||||
} else {
|
||||
// 不选和选硬币 i 这两种方案的较小值
|
||||
dp[a] = min(dp[a], dp[a - coins[i - 1]] + 1)
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[amt] != MAX ? dp[amt] : -1
|
||||
}
|
||||
|
||||
@main
|
||||
enum CoinChange {
|
||||
/* Driver Code */
|
||||
static func main() {
|
||||
let coins = [1, 2, 5]
|
||||
let amt = 4
|
||||
|
||||
// 动态规划
|
||||
var res = coinChangeDP(coins: coins, amt: amt)
|
||||
print("凑到目标金额所需的最少硬币数量为 \(res)")
|
||||
|
||||
// 状态压缩后的动态规划
|
||||
res = coinChangeDPComp(coins: coins, amt: amt)
|
||||
print("凑到目标金额所需的最少硬币数量为 \(res)")
|
||||
}
|
||||
}
|
67
codes/swift/chapter_dynamic_programming/coin_change_ii.swift
Normal file
67
codes/swift/chapter_dynamic_programming/coin_change_ii.swift
Normal file
@ -0,0 +1,67 @@
|
||||
/**
|
||||
* File: coin_change_ii.swift
|
||||
* Created Time: 2023-07-16
|
||||
* Author: nuomi1 (nuomi1@qq.com)
|
||||
*/
|
||||
|
||||
/* 零钱兑换 II:动态规划 */
|
||||
func coinChangeIIDP(coins: [Int], amt: Int) -> Int {
|
||||
let n = coins.count
|
||||
// 初始化 dp 表
|
||||
var dp = Array(repeating: Array(repeating: 0, count: amt + 1), count: n + 1)
|
||||
// 初始化首列
|
||||
for i in stride(from: 0, through: n, by: 1) {
|
||||
dp[i][0] = 1
|
||||
}
|
||||
// 状态转移
|
||||
for i in stride(from: 1, through: n, by: 1) {
|
||||
for a in stride(from: 1, through: amt, by: 1) {
|
||||
if coins[i - 1] > a {
|
||||
// 若超过背包容量,则不选硬币 i
|
||||
dp[i][a] = dp[i - 1][a]
|
||||
} else {
|
||||
// 不选和选硬币 i 这两种方案之和
|
||||
dp[i][a] = dp[i - 1][a] + dp[i][a - coins[i - 1]]
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[n][amt]
|
||||
}
|
||||
|
||||
/* 零钱兑换 II:状态压缩后的动态规划 */
|
||||
func coinChangeIIDPComp(coins: [Int], amt: Int) -> Int {
|
||||
let n = coins.count
|
||||
// 初始化 dp 表
|
||||
var dp = Array(repeating: 0, count: amt + 1)
|
||||
dp[0] = 1
|
||||
// 状态转移
|
||||
for i in stride(from: 1, through: n, by: 1) {
|
||||
for a in stride(from: 1, through: amt, by: 1) {
|
||||
if coins[i - 1] > a {
|
||||
// 若超过背包容量,则不选硬币 i
|
||||
dp[a] = dp[a]
|
||||
} else {
|
||||
// 不选和选硬币 i 这两种方案之和
|
||||
dp[a] = dp[a] + dp[a - coins[i - 1]]
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[amt]
|
||||
}
|
||||
|
||||
@main
|
||||
enum CoinChangeII {
|
||||
/* Driver Code */
|
||||
static func main() {
|
||||
let coins = [1, 2, 5]
|
||||
let amt = 5
|
||||
|
||||
// 动态规划
|
||||
var res = coinChangeIIDP(coins: coins, amt: amt)
|
||||
print("凑出目标金额的硬币组合数量为 \(res)")
|
||||
|
||||
// 状态压缩后的动态规划
|
||||
res = coinChangeIIDPComp(coins: coins, amt: amt)
|
||||
print("凑出目标金额的硬币组合数量为 \(res)")
|
||||
}
|
||||
}
|
147
codes/swift/chapter_dynamic_programming/edit_distance.swift
Normal file
147
codes/swift/chapter_dynamic_programming/edit_distance.swift
Normal file
@ -0,0 +1,147 @@
|
||||
/**
|
||||
* File: edit_distance.swift
|
||||
* Created Time: 2023-07-16
|
||||
* Author: nuomi1 (nuomi1@qq.com)
|
||||
*/
|
||||
|
||||
/* 编辑距离:暴力搜索 */
|
||||
func editDistanceDFS(s: String, t: String, i: Int, j: Int) -> Int {
|
||||
// 若 s 和 t 都为空,则返回 0
|
||||
if i == 0, j == 0 {
|
||||
return 0
|
||||
}
|
||||
// 若 s 为空,则返回 t 长度
|
||||
if i == 0 {
|
||||
return j
|
||||
}
|
||||
// 若 t 为空,则返回 s 长度
|
||||
if j == 0 {
|
||||
return i
|
||||
}
|
||||
// 若两字符相等,则直接跳过此两字符
|
||||
if s.utf8CString[i - 1] == t.utf8CString[j - 1] {
|
||||
return editDistanceDFS(s: s, t: t, i: i - 1, j: j - 1)
|
||||
}
|
||||
// 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
|
||||
let insert = editDistanceDFS(s: s, t: t, i: i, j: j - 1)
|
||||
let delete = editDistanceDFS(s: s, t: t, i: i - 1, j: j)
|
||||
let replace = editDistanceDFS(s: s, t: t, i: i - 1, j: j - 1)
|
||||
// 返回最少编辑步数
|
||||
return min(min(insert, delete), replace) + 1
|
||||
}
|
||||
|
||||
/* 编辑距离:记忆化搜索 */
|
||||
func editDistanceDFSMem(s: String, t: String, mem: inout [[Int]], i: Int, j: Int) -> Int {
|
||||
// 若 s 和 t 都为空,则返回 0
|
||||
if i == 0, j == 0 {
|
||||
return 0
|
||||
}
|
||||
// 若 s 为空,则返回 t 长度
|
||||
if i == 0 {
|
||||
return j
|
||||
}
|
||||
// 若 t 为空,则返回 s 长度
|
||||
if j == 0 {
|
||||
return i
|
||||
}
|
||||
// 若已有记录,则直接返回之
|
||||
if mem[i][j] != -1 {
|
||||
return mem[i][j]
|
||||
}
|
||||
// 若两字符相等,则直接跳过此两字符
|
||||
if s.utf8CString[i - 1] == t.utf8CString[j - 1] {
|
||||
return editDistanceDFS(s: s, t: t, i: i - 1, j: j - 1)
|
||||
}
|
||||
// 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
|
||||
let insert = editDistanceDFS(s: s, t: t, i: i, j: j - 1)
|
||||
let delete = editDistanceDFS(s: s, t: t, i: i - 1, j: j)
|
||||
let replace = editDistanceDFS(s: s, t: t, i: i - 1, j: j - 1)
|
||||
// 记录并返回最少编辑步数
|
||||
mem[i][j] = min(min(insert, delete), replace) + 1
|
||||
return mem[i][j]
|
||||
}
|
||||
|
||||
/* 编辑距离:动态规划 */
|
||||
func editDistanceDP(s: String, t: String) -> Int {
|
||||
let n = s.utf8CString.count
|
||||
let m = t.utf8CString.count
|
||||
var dp = Array(repeating: Array(repeating: 0, count: m + 1), count: n + 1)
|
||||
// 状态转移:首行首列
|
||||
for i in stride(from: 1, through: n, by: 1) {
|
||||
dp[i][0] = i
|
||||
}
|
||||
for j in stride(from: 1, through: m, by: 1) {
|
||||
dp[0][j] = j
|
||||
}
|
||||
// 状态转移:其余行列
|
||||
for i in stride(from: 1, through: n, by: 1) {
|
||||
for j in stride(from: 1, through: m, by: 1) {
|
||||
if s.utf8CString[i - 1] == t.utf8CString[j - 1] {
|
||||
// 若两字符相等,则直接跳过此两字符
|
||||
dp[i][j] = dp[i - 1][j - 1]
|
||||
} else {
|
||||
// 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
|
||||
dp[i][j] = min(min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[n][m]
|
||||
}
|
||||
|
||||
/* 编辑距离:状态压缩后的动态规划 */
|
||||
func editDistanceDPComp(s: String, t: String) -> Int {
|
||||
let n = s.utf8CString.count
|
||||
let m = t.utf8CString.count
|
||||
var dp = Array(repeating: 0, count: m + 1)
|
||||
// 状态转移:首行
|
||||
for j in stride(from: 1, through: m, by: 1) {
|
||||
dp[j] = j
|
||||
}
|
||||
// 状态转移:其余行
|
||||
for i in stride(from: 1, through: n, by: 1) {
|
||||
// 状态转移:首列
|
||||
var leftup = dp[0] // 暂存 dp[i-1, j-1]
|
||||
dp[0] = i
|
||||
// 状态转移:其余列
|
||||
for j in stride(from: 1, through: m, by: 1) {
|
||||
let temp = dp[j]
|
||||
if s.utf8CString[i - 1] == t.utf8CString[j - 1] {
|
||||
// 若两字符相等,则直接跳过此两字符
|
||||
dp[j] = leftup
|
||||
} else {
|
||||
// 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
|
||||
dp[j] = min(min(dp[j - 1], dp[j]), leftup) + 1
|
||||
}
|
||||
leftup = temp // 更新为下一轮的 dp[i-1, j-1]
|
||||
}
|
||||
}
|
||||
return dp[m]
|
||||
}
|
||||
|
||||
@main
|
||||
enum EditDistance {
|
||||
/* Driver Code */
|
||||
static func main() {
|
||||
let s = "bag"
|
||||
let t = "pack"
|
||||
let n = s.utf8CString.count
|
||||
let m = t.utf8CString.count
|
||||
|
||||
// 暴力搜索
|
||||
var res = editDistanceDFS(s: s, t: t, i: n, j: m)
|
||||
print("将 \(s) 更改为 \(t) 最少需要编辑 \(res) 步")
|
||||
|
||||
// 记忆化搜索
|
||||
var mem = Array(repeating: Array(repeating: -1, count: m + 1), count: n + 1)
|
||||
res = editDistanceDFSMem(s: s, t: t, mem: &mem, i: n, j: m)
|
||||
print("将 \(s) 更改为 \(t) 最少需要编辑 \(res) 步")
|
||||
|
||||
// 动态规划
|
||||
res = editDistanceDP(s: s, t: t)
|
||||
print("将 \(s) 更改为 \(t) 最少需要编辑 \(res) 步")
|
||||
|
||||
// 状态压缩后的动态规划
|
||||
res = editDistanceDPComp(s: s, t: t)
|
||||
print("将 \(s) 更改为 \(t) 最少需要编辑 \(res) 步")
|
||||
}
|
||||
}
|
110
codes/swift/chapter_dynamic_programming/knapsack.swift
Normal file
110
codes/swift/chapter_dynamic_programming/knapsack.swift
Normal file
@ -0,0 +1,110 @@
|
||||
/**
|
||||
* File: knapsack.swift
|
||||
* Created Time: 2023-07-15
|
||||
* Author: nuomi1 (nuomi1@qq.com)
|
||||
*/
|
||||
|
||||
/* 0-1 背包:暴力搜索 */
|
||||
func knapsackDFS(wgt: [Int], val: [Int], i: Int, c: Int) -> Int {
|
||||
// 若已选完所有物品或背包无容量,则返回价值 0
|
||||
if i == 0 || c == 0 {
|
||||
return 0
|
||||
}
|
||||
// 若超过背包容量,则只能不放入背包
|
||||
if wgt[i - 1] > c {
|
||||
return knapsackDFS(wgt: wgt, val: val, i: i - 1, c: c)
|
||||
}
|
||||
// 计算不放入和放入物品 i 的最大价值
|
||||
let no = knapsackDFS(wgt: wgt, val: val, i: i - 1, c: c)
|
||||
let yes = knapsackDFS(wgt: wgt, val: val, i: i - 1, c: c - wgt[i - 1]) + val[i - 1]
|
||||
// 返回两种方案中价值更大的那一个
|
||||
return max(no, yes)
|
||||
}
|
||||
|
||||
/* 0-1 背包:记忆化搜索 */
|
||||
func knapsackDFSMem(wgt: [Int], val: [Int], mem: inout [[Int]], i: Int, c: Int) -> Int {
|
||||
// 若已选完所有物品或背包无容量,则返回价值 0
|
||||
if i == 0 || c == 0 {
|
||||
return 0
|
||||
}
|
||||
// 若已有记录,则直接返回
|
||||
if mem[i][c] != -1 {
|
||||
return mem[i][c]
|
||||
}
|
||||
// 若超过背包容量,则只能不放入背包
|
||||
if wgt[i - 1] > c {
|
||||
return knapsackDFSMem(wgt: wgt, val: val, mem: &mem, i: i - 1, c: c)
|
||||
}
|
||||
// 计算不放入和放入物品 i 的最大价值
|
||||
let no = knapsackDFSMem(wgt: wgt, val: val, mem: &mem, i: i - 1, c: c)
|
||||
let yes = knapsackDFSMem(wgt: wgt, val: val, mem: &mem, i: i - 1, c: c - wgt[i - 1]) + val[i - 1]
|
||||
// 记录并返回两种方案中价值更大的那一个
|
||||
mem[i][c] = max(no, yes)
|
||||
return mem[i][c]
|
||||
}
|
||||
|
||||
/* 0-1 背包:动态规划 */
|
||||
func knapsackDP(wgt: [Int], val: [Int], cap: Int) -> Int {
|
||||
let n = wgt.count
|
||||
// 初始化 dp 表
|
||||
var dp = Array(repeating: Array(repeating: 0, count: cap + 1), count: n + 1)
|
||||
// 状态转移
|
||||
for i in stride(from: 1, through: n, by: 1) {
|
||||
for c in stride(from: 1, through: cap, by: 1) {
|
||||
if wgt[i - 1] > c {
|
||||
// 若超过背包容量,则不选物品 i
|
||||
dp[i][c] = dp[i - 1][c]
|
||||
} else {
|
||||
// 不选和选物品 i 这两种方案的较大值
|
||||
dp[i][c] = max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1])
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[n][cap]
|
||||
}
|
||||
|
||||
/* 0-1 背包:状态压缩后的动态规划 */
|
||||
func knapsackDPComp(wgt: [Int], val: [Int], cap: Int) -> Int {
|
||||
let n = wgt.count
|
||||
// 初始化 dp 表
|
||||
var dp = Array(repeating: 0, count: cap + 1)
|
||||
// 状态转移
|
||||
for i in stride(from: 1, through: n, by: 1) {
|
||||
// 倒序遍历
|
||||
for c in stride(from: cap, through: 1, by: -1) {
|
||||
if wgt[i - 1] <= c {
|
||||
// 不选和选物品 i 这两种方案的较大值
|
||||
dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1])
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[cap]
|
||||
}
|
||||
|
||||
@main
|
||||
enum Knapsack {
|
||||
/* Driver Code */
|
||||
static func main() {
|
||||
let wgt = [10, 20, 30, 40, 50]
|
||||
let val = [50, 120, 150, 210, 240]
|
||||
let cap = 50
|
||||
let n = wgt.count
|
||||
|
||||
// 暴力搜索
|
||||
var res = knapsackDFS(wgt: wgt, val: val, i: n, c: cap)
|
||||
print("不超过背包容量的最大物品价值为 \(res)")
|
||||
|
||||
// 记忆化搜索
|
||||
var mem = Array(repeating: Array(repeating: -1, count: cap + 1), count: n + 1)
|
||||
res = knapsackDFSMem(wgt: wgt, val: val, mem: &mem, i: n, c: cap)
|
||||
print("不超过背包容量的最大物品价值为 \(res)")
|
||||
|
||||
// 动态规划
|
||||
res = knapsackDP(wgt: wgt, val: val, cap: cap)
|
||||
print("不超过背包容量的最大物品价值为 \(res)")
|
||||
|
||||
// 状态压缩后的动态规划
|
||||
res = knapsackDPComp(wgt: wgt, val: val, cap: cap)
|
||||
print("不超过背包容量的最大物品价值为 \(res)")
|
||||
}
|
||||
}
|
@ -0,0 +1,51 @@
|
||||
/**
|
||||
* File: min_cost_climbing_stairs_dp.swift
|
||||
* Created Time: 2023-07-15
|
||||
* Author: nuomi1 (nuomi1@qq.com)
|
||||
*/
|
||||
|
||||
/* 爬楼梯最小代价:动态规划 */
|
||||
func minCostClimbingStairsDP(cost: [Int]) -> Int {
|
||||
let n = cost.count - 1
|
||||
if n == 1 || n == 2 {
|
||||
return cost[n]
|
||||
}
|
||||
// 初始化 dp 表,用于存储子问题的解
|
||||
var dp = Array(repeating: 0, count: n + 1)
|
||||
// 初始状态:预设最小子问题的解
|
||||
dp[1] = 1
|
||||
dp[2] = 2
|
||||
// 状态转移:从较小子问题逐步求解较大子问题
|
||||
for i in stride(from: 3, through: n, by: 1) {
|
||||
dp[i] = min(dp[i - 1], dp[i - 2]) + cost[i]
|
||||
}
|
||||
return dp[n]
|
||||
}
|
||||
|
||||
/* 爬楼梯最小代价:状态压缩后的动态规划 */
|
||||
func minCostClimbingStairsDPComp(cost: [Int]) -> Int {
|
||||
let n = cost.count - 1
|
||||
if n == 1 || n == 2 {
|
||||
return cost[n]
|
||||
}
|
||||
var (a, b) = (cost[1], cost[2])
|
||||
for i in stride(from: 3, through: n, by: 1) {
|
||||
(a, b) = (b, min(a, b) + cost[i])
|
||||
}
|
||||
return b
|
||||
}
|
||||
|
||||
@main
|
||||
enum MinCostClimbingStairsDP {
|
||||
/* Driver Code */
|
||||
static func main() {
|
||||
let cost = [0, 1, 10, 1, 1, 1, 10, 1, 1, 10, 1]
|
||||
print("输入楼梯的代价列表为 \(cost)")
|
||||
|
||||
var res = minCostClimbingStairsDP(cost: cost)
|
||||
print("爬完楼梯的最低代价为 \(res)")
|
||||
|
||||
res = minCostClimbingStairsDPComp(cost: cost)
|
||||
print("爬完楼梯的最低代价为 \(res)")
|
||||
}
|
||||
}
|
123
codes/swift/chapter_dynamic_programming/min_path_sum.swift
Normal file
123
codes/swift/chapter_dynamic_programming/min_path_sum.swift
Normal file
@ -0,0 +1,123 @@
|
||||
/**
|
||||
* File: min_path_sum.swift
|
||||
* Created Time: 2023-07-15
|
||||
* Author: nuomi1 (nuomi1@qq.com)
|
||||
*/
|
||||
|
||||
/* 最小路径和:暴力搜索 */
|
||||
func minPathSumDFS(grid: [[Int]], i: Int, j: Int) -> Int {
|
||||
// 若为左上角单元格,则终止搜索
|
||||
if i == 0, j == 0 {
|
||||
return grid[0][0]
|
||||
}
|
||||
// 若行列索引越界,则返回 +∞ 代价
|
||||
if i < 0 || j < 0 {
|
||||
return .max
|
||||
}
|
||||
// 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价
|
||||
let left = minPathSumDFS(grid: grid, i: i - 1, j: j)
|
||||
let up = minPathSumDFS(grid: grid, i: i, j: j - 1)
|
||||
// 返回从左上角到 (i, j) 的最小路径代价
|
||||
return min(left, up) + grid[i][j]
|
||||
}
|
||||
|
||||
/* 最小路径和:记忆化搜索 */
|
||||
func minPathSumDFSMem(grid: [[Int]], mem: inout [[Int]], i: Int, j: Int) -> Int {
|
||||
// 若为左上角单元格,则终止搜索
|
||||
if i == 0, j == 0 {
|
||||
return grid[0][0]
|
||||
}
|
||||
// 若行列索引越界,则返回 +∞ 代价
|
||||
if i < 0 || j < 0 {
|
||||
return .max
|
||||
}
|
||||
// 若已有记录,则直接返回
|
||||
if mem[i][j] != -1 {
|
||||
return mem[i][j]
|
||||
}
|
||||
// 左边和上边单元格的最小路径代价
|
||||
let left = minPathSumDFSMem(grid: grid, mem: &mem, i: i - 1, j: j)
|
||||
let up = minPathSumDFSMem(grid: grid, mem: &mem, i: i, j: j - 1)
|
||||
// 记录并返回左上角到 (i, j) 的最小路径代价
|
||||
mem[i][j] = min(left, up) + grid[i][j]
|
||||
return mem[i][j]
|
||||
}
|
||||
|
||||
/* 最小路径和:动态规划 */
|
||||
func minPathSumDP(grid: [[Int]]) -> Int {
|
||||
let n = grid.count
|
||||
let m = grid[0].count
|
||||
// 初始化 dp 表
|
||||
var dp = Array(repeating: Array(repeating: 0, count: m), count: n)
|
||||
dp[0][0] = grid[0][0]
|
||||
// 状态转移:首行
|
||||
for j in stride(from: 1, to: m, by: 1) {
|
||||
dp[0][j] = dp[0][j - 1] + grid[0][j]
|
||||
}
|
||||
// 状态转移:首列
|
||||
for i in stride(from: 1, to: n, by: 1) {
|
||||
dp[i][0] = dp[i - 1][0] + grid[i][0]
|
||||
}
|
||||
// 状态转移:其余行列
|
||||
for i in stride(from: 1, to: n, by: 1) {
|
||||
for j in stride(from: 1, to: m, by: 1) {
|
||||
dp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j]
|
||||
}
|
||||
}
|
||||
return dp[n - 1][m - 1]
|
||||
}
|
||||
|
||||
/* 最小路径和:状态压缩后的动态规划 */
|
||||
func minPathSumDPComp(grid: [[Int]]) -> Int {
|
||||
let n = grid.count
|
||||
let m = grid[0].count
|
||||
// 初始化 dp 表
|
||||
var dp = Array(repeating: 0, count: m)
|
||||
// 状态转移:首行
|
||||
dp[0] = grid[0][0]
|
||||
for j in stride(from: 1, to: m, by: 1) {
|
||||
dp[j] = dp[j - 1] + grid[0][j]
|
||||
}
|
||||
// 状态转移:其余行
|
||||
for i in stride(from: 1, to: n, by: 1) {
|
||||
// 状态转移:首列
|
||||
dp[0] = dp[0] + grid[i][0]
|
||||
// 状态转移:其余列
|
||||
for j in stride(from: 1, to: m, by: 1) {
|
||||
dp[j] = min(dp[j - 1], dp[j]) + grid[i][j]
|
||||
}
|
||||
}
|
||||
return dp[m - 1]
|
||||
}
|
||||
|
||||
@main
|
||||
enum MinPathSum {
|
||||
/* Driver Code */
|
||||
static func main() {
|
||||
let grid = [
|
||||
[1, 3, 1, 5],
|
||||
[2, 2, 4, 2],
|
||||
[5, 3, 2, 1],
|
||||
[4, 3, 5, 2],
|
||||
]
|
||||
let n = grid.count
|
||||
let m = grid[0].count
|
||||
|
||||
// 暴力搜索
|
||||
var res = minPathSumDFS(grid: grid, i: n - 1, j: m - 1)
|
||||
print("从左上角到右下角的做小路径和为 \(res)")
|
||||
|
||||
// 记忆化搜索
|
||||
var mem = Array(repeating: Array(repeating: -1, count: m), count: n)
|
||||
res = minPathSumDFSMem(grid: grid, mem: &mem, i: n - 1, j: m - 1)
|
||||
print("从左上角到右下角的做小路径和为 \(res)")
|
||||
|
||||
// 动态规划
|
||||
res = minPathSumDP(grid: grid)
|
||||
print("从左上角到右下角的做小路径和为 \(res)")
|
||||
|
||||
// 状态压缩后的动态规划
|
||||
res = minPathSumDPComp(grid: grid)
|
||||
print("从左上角到右下角的做小路径和为 \(res)")
|
||||
}
|
||||
}
|
@ -0,0 +1,63 @@
|
||||
/**
|
||||
* File: unbounded_knapsack.swift
|
||||
* Created Time: 2023-07-15
|
||||
* Author: nuomi1 (nuomi1@qq.com)
|
||||
*/
|
||||
|
||||
/* 完全背包:动态规划 */
|
||||
func unboundedKnapsackDP(wgt: [Int], val: [Int], cap: Int) -> Int {
|
||||
let n = wgt.count
|
||||
// 初始化 dp 表
|
||||
var dp = Array(repeating: Array(repeating: 0, count: cap + 1), count: n + 1)
|
||||
// 状态转移
|
||||
for i in stride(from: 1, through: n, by: 1) {
|
||||
for c in stride(from: 1, through: cap, by: 1) {
|
||||
if wgt[i - 1] > c {
|
||||
// 若超过背包容量,则不选物品 i
|
||||
dp[i][c] = dp[i - 1][c]
|
||||
} else {
|
||||
// 不选和选物品 i 这两种方案的较大值
|
||||
dp[i][c] = max(dp[i - 1][c], dp[i][c - wgt[i - 1]] + val[i - 1])
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[n][cap]
|
||||
}
|
||||
|
||||
/* 完全背包:状态压缩后的动态规划 */
|
||||
func unboundedKnapsackDPComp(wgt: [Int], val: [Int], cap: Int) -> Int {
|
||||
let n = wgt.count
|
||||
// 初始化 dp 表
|
||||
var dp = Array(repeating: 0, count: cap + 1)
|
||||
// 状态转移
|
||||
for i in stride(from: 1, through: n, by: 1) {
|
||||
for c in stride(from: 1, through: cap, by: 1) {
|
||||
if wgt[i - 1] > c {
|
||||
// 若超过背包容量,则不选物品 i
|
||||
dp[c] = dp[c]
|
||||
} else {
|
||||
// 不选和选物品 i 这两种方案的较大值
|
||||
dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1])
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[cap]
|
||||
}
|
||||
|
||||
@main
|
||||
enum UnboundedKnapsack {
|
||||
/* Driver Code */
|
||||
static func main() {
|
||||
let wgt = [1, 2, 3]
|
||||
let val = [5, 11, 15]
|
||||
let cap = 4
|
||||
|
||||
// 动态规划
|
||||
var res = unboundedKnapsackDP(wgt: wgt, val: val, cap: cap)
|
||||
print("不超过背包容量的最大物品价值为 \(res)")
|
||||
|
||||
// 状态压缩后的动态规划
|
||||
res = unboundedKnapsackDPComp(wgt: wgt, val: val, cap: cap)
|
||||
print("不超过背包容量的最大物品价值为 \(res)")
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user