fix format error

This commit is contained in:
a16su 2022-12-27 18:34:12 +08:00
parent 9eac1275f6
commit 8b401c2acb
No known key found for this signature in database
GPG Key ID: DEF8F41D496E237C
9 changed files with 248 additions and 363 deletions

View File

@ -1,3 +1,9 @@
"""
File: avl_tree.py
Created Time: 2022-12-20
Author: a16su (lpluls001@gmail.com)
"""
import sys, os.path as osp
import typing
@ -5,75 +11,36 @@ sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from include import *
class AVLTreeNode:
def __init__(
self,
val=None,
height: int = 0,
left: typing.Optional["AVLTreeNode"] = None,
right: typing.Optional["AVLTreeNode"] = None,
):
self.val = val
self.height = height
self.left = left
self.right = right
def __str__(self):
val = self.val
left_val = self.left.val if self.left else None
right_val = self.right.val if self.right else None
return "<AVLTreeNode: {}, leftAVLTreeNode: {}, rightAVLTreeNode: {}>".format(
val, left_val, right_val
)
class AVLTree:
def __init__(self, root: typing.Optional[AVLTreeNode] = None):
def __init__(self, root: typing.Optional[TreeNode] = None):
self.root = root
@staticmethod
def height(node: typing.Optional[AVLTreeNode]) -> int:
"""
获取结点高度
Args:
node:起始结点
""" 获取结点高度 """
Returns: 高度 or -1
"""
def height(self, node: typing.Optional[TreeNode]) -> int:
# 空结点高度为 -1 ,叶结点高度为 0
if node is not None:
return node.height
return -1
def __update_height(self, node: AVLTreeNode):
"""
更新结点高度
Args:
node: 要更新高度的结点
""" 更新结点高度 """
Returns: None
"""
def __update_height(self, node: TreeNode):
# 结点高度等于最高子树高度 + 1
node.height = max([self.height(node.left), self.height(node.right)]) + 1
def balance_factor(self, node: AVLTreeNode) -> int:
"""
获取结点平衡因子
Args:
node: 要获取平衡因子的结点
""" 获取平衡因子 """
Returns: 平衡因子
"""
def balance_factor(self, node: TreeNode) -> int:
# 空结点平衡因子为 0
if node is None:
return 0
# 结点平衡因子 = 左子树高度 - 右子树高度
return self.height(node.left) - self.height(node.right)
def __right_rotate(self, node: AVLTreeNode) -> AVLTreeNode:
""" 右旋操作 """
def __right_rotate(self, node: TreeNode) -> TreeNode:
child = node.left
grand_child = child.right
# 以 child 为原点,将 node 向右旋转
@ -85,7 +52,9 @@ class AVLTree:
# 返回旋转后子树的根节点
return child
def __left_rotate(self, node: AVLTreeNode) -> AVLTreeNode:
""" 左旋操作 """
def __left_rotate(self, node: TreeNode) -> TreeNode:
child = node.right
grand_child = child.left
# 以 child 为原点,将 node 向左旋转
@ -97,15 +66,9 @@ class AVLTree:
# 返回旋转后子树的根节点
return child
def rotate(self, node: AVLTreeNode):
"""
执行旋转操作使该子树重新恢复平衡
Args:
node: 要旋转的根结点
""" 执行旋转操作,使该子树重新恢复平衡 """
Returns: 旋转后的根结点
"""
def __rotate(self, node: TreeNode) -> TreeNode:
# 获取结点 node 的平衡因子
balance_factor = self.balance_factor(node)
# 左偏树
@ -129,76 +92,46 @@ class AVLTree:
# 平衡树,无需旋转,直接返回
return node
def insert(self, val) -> AVLTreeNode:
"""
插入结点
Args:
val: 结点的值
""" 插入结点 """
Returns:
node: 插入结点后的根结点
"""
self.root = self.insert_helper(self.root, val)
def insert(self, val) -> TreeNode:
self.root = self.__insert_helper(self.root, val)
return self.root
def insert_helper(
self, node: typing.Optional[AVLTreeNode], val: int
) -> AVLTreeNode:
"""
递归插入结点辅助函数
Args:
node: 要插入的根结点
val: 要插入的结点的值
""" 递归插入结点(辅助函数)"""
Returns: 插入结点后的根结点
"""
def __insert_helper(self, node: typing.Optional[TreeNode], val: int) -> TreeNode:
if node is None:
return AVLTreeNode(val)
return TreeNode(val)
# 1. 查找插入位置,并插入结点
if val < node.val:
node.left = self.insert_helper(node.left, val)
node.left = self.__insert_helper(node.left, val)
elif val > node.val:
node.right = self.insert_helper(node.right, val)
node.right = self.__insert_helper(node.right, val)
else:
# 重复结点不插入,直接返回
return node
# 更新结点高度
self.__update_height(node)
# 2. 执行旋转操作,使该子树重新恢复平衡
return self.rotate(node)
return self.__rotate(node)
""" 删除结点 """
def remove(self, val: int):
"""
删除结点
Args:
val: 要删除的结点的值
Returns:
"""
root = self.remove_helper(self.root, val)
root = self.__remove_helper(self.root, val)
return root
def remove_helper(
self, node: typing.Optional[AVLTreeNode], val: int
) -> typing.Optional[AVLTreeNode]:
"""
递归删除结点辅助函数
Args:
node: 删除的起始结点
val: 要删除的结点的值
""" 递归删除结点(辅助函数) """
Returns: 删除目标结点后的起始结点
"""
def __remove_helper(self, node: typing.Optional[TreeNode], val: int) -> typing.Optional[TreeNode]:
if node is None:
return None
# 1. 查找结点,并删除之
if val < node.val:
node.left = self.remove_helper(node.left, val)
node.left = self.__remove_helper(node.left, val)
elif val > node.val:
node.right = self.remove_helper(node.right, val)
node.right = self.__remove_helper(node.right, val)
else:
if node.left is None or node.right is None:
child = node.left or node.right
@ -210,17 +143,16 @@ class AVLTree:
node = child
else: # 子结点数量 = 2 ,则将中序遍历的下个结点删除,并用该结点替换当前结点
temp = self.min_node(node.right)
node.right = self.remove_helper(node.right, temp.val)
node.right = self.__remove_helper(node.right, temp.val)
node.val = temp.val
# 更新结点高度
self.__update_height(node)
# 2. 执行旋转操作,使该子树重新恢复平衡
return self.rotate(node)
return self.__rotate(node)
def min_node(
self, node: typing.Optional[AVLTreeNode]
) -> typing.Optional[AVLTreeNode]:
# 获取最小结点
""" 获取最小结点 """
def min_node(self, node: typing.Optional[TreeNode]) -> typing.Optional[TreeNode]:
if node is None:
return None
# 循环访问左子结点,直到叶结点时为最小结点,跳出
@ -228,15 +160,22 @@ class AVLTree:
node = node.left
return node
""" 查找结点 """
def search(self, val: int):
cur = self.root
# 循环查找,越过叶结点后跳出
while cur is not None:
# 目标结点在 root 的右子树中
if cur.val < val:
cur = cur.right
# 目标结点在 root 的左子树中
elif cur.val > val:
cur = cur.left
# 找到目标结点,跳出循环
else:
break
# 返回目标结点
return cur

View File

@ -1,43 +1,46 @@
"""
File: binary_search_tree.py
Created Time: 2022-11-25
Author: Krahets (krahets@163.com)
Created Time: 2022-12-20
Author: a16su (lpluls001@gmail.com)
"""
import sys, os.path as osp
import typing
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from include import *
""" 二叉搜索树 """
class BinarySearchTree:
"""
二叉搜索树
"""
def __init__(self, nums) -> None:
def __init__(self, nums: typing.List[int]) -> None:
nums.sort()
self.__root = self.buildTree(nums, 0, len(nums) - 1)
self.__root = self.build_tree(nums, 0, len(nums) - 1)
def buildTree(self, nums, start_index, end_index):
""" 构建二叉搜索树 """
def build_tree(self, nums: typing.List[int], start_index: int, end_index: int) -> typing.Optional[TreeNode]:
if start_index > end_index:
return None
# 将数组中间结点作为根结点
mid = (start_index + end_index) // 2
root = TreeNode(nums[mid])
root.left = self.buildTree(
nums=nums, start_index=start_index, end_index=mid - 1
)
root.right = self.buildTree(nums=nums, start_index=mid + 1, end_index=end_index)
# 递归建立左子树和右子树
root.left = self.build_tree(nums=nums, start_index=start_index, end_index=mid - 1)
root.right = self.build_tree(nums=nums, start_index=mid + 1, end_index=end_index)
return root
def get_root(self):
@property
def root(self) -> typing.Optional[TreeNode]:
return self.__root
def search(self, num):
"""
查找结点
"""
cur = self.get_root()
""" 查找结点 """
def search(self, num: int) -> typing.Optional[TreeNode]:
cur = self.root
# 循环查找,越过叶结点后跳出
while cur is not None:
# 目标结点在 root 的右子树中
@ -51,11 +54,10 @@ class BinarySearchTree:
break
return cur
def insert(self, num):
"""
插入结点
"""
root = self.get_root()
""" 插入结点 """
def insert(self, num: int) -> typing.Optional[TreeNode]:
root = self.root
# 若树为空,直接提前返回
if root is None:
return None
@ -83,11 +85,10 @@ class BinarySearchTree:
pre.left = node
return node
def remove(self, num):
"""
删除结点
"""
root = self.get_root()
""" 删除结点 """
def remove(self, num: int) -> typing.Optional[TreeNode]:
root = self.root
# 若树为空,直接提前返回
if root is None:
return None
@ -130,10 +131,9 @@ class BinarySearchTree:
cur.val = tmp
return cur
def min(self, root):
"""
获取最小结点
"""
""" 获取最小结点 """
def min(self, root: typing.Optional[TreeNode]) -> typing.Optional[TreeNode]:
if root is None:
return root
@ -148,7 +148,7 @@ if __name__ == "__main__":
nums = list(range(1, 16))
bst = BinarySearchTree(nums=nums)
print("\n初始化的二叉树为\n")
print_tree(bst.get_root())
print_tree(bst.root)
# 查找结点
node = bst.search(5)
@ -157,17 +157,17 @@ if __name__ == "__main__":
# 插入结点
ndoe = bst.insert(16)
print("\n插入结点 16 后,二叉树为\n")
print_tree(bst.get_root())
print_tree(bst.root)
# 删除结点
bst.remove(1)
print("\n删除结点 1 后,二叉树为\n")
print_tree(bst.get_root())
print_tree(bst.root)
bst.remove(2)
print("\n删除结点 2 后,二叉树为\n")
print_tree(bst.get_root())
print_tree(bst.root)
bst.remove(4)
print("\n删除结点 4 后,二叉树为\n")
print_tree(bst.get_root())
print_tree(bst.root)

View File

@ -1,7 +1,7 @@
"""
File: binary_tree.py
Created Time: 2022-11-25
Author: Krahets (krahets@163.com)
Created Time: 2022-12-20
Author: a16su (lpluls001@gmail.com)
"""
import sys, os.path as osp

View File

@ -1,17 +1,22 @@
"""
File: binary_tree_bfs.py
Created Time: 2022-11-25
Author: Krahets (krahets@163.com)
Created Time: 2022-12-20
Author: a16su (lpluls001@gmail.com)
"""
import sys, os.path as osp
import typing
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from include import *
def hierOrder(root):
""" 层序遍历 """
def hier_order(root: TreeNode):
# 初始化队列,加入根结点
queue = collections.deque()
queue: typing.Deque[TreeNode] = collections.deque()
queue.append(root)
# 初始化一个列表,用于保存遍历序列
result = []
@ -33,13 +38,11 @@ def hierOrder(root):
if __name__ == "__main__":
# 初始化二叉树
# 这里借助了一个从数组直接生成二叉树的函数
root = list_to_tree(
arr=[1, 2, 3, 4, 5, 6, 7, None, None, None, None, None, None, None, None]
)
root = list_to_tree(arr=[1, 2, 3, 4, 5, 6, 7, None, None, None, None, None, None, None, None])
print("\n初始化二叉树\n")
print_tree(root)
# 层序遍历
result = hierOrder(root)
result = hier_order(root)
print("\n层序遍历的结点打印序列 = ", result)
assert result == [1, 2, 3, 4, 5, 6, 7]

View File

@ -1,10 +1,12 @@
"""
File: binary_tree_dfs.py
Created Time: 2022-11-25
Author: Krahets (krahets@163.com)
Created Time: 2022-12-20
Author: a16su (lpluls001@gmail.com)
"""
import sys, os.path as osp
import typing
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from include import *
@ -12,42 +14,42 @@ from include import *
result = []
def preOrder(root):
"""
前序遍历二叉树
"""
""" 前序遍历二叉树 """
def pre_order(root: typing.Optional[TreeNode]):
if root is None:
return
# 访问优先级:根结点 -> 左子树 -> 右子树
result.append(root.val)
preOrder(root=root.left)
preOrder(root=root.right)
pre_order(root=root.left)
pre_order(root=root.right)
def inOrder(root):
"""
中序遍历二叉树
"""
""" 中序遍历二叉树 """
def in_order(root: typing.Optional[TreeNode]):
if root is None:
return
# 访问优先级:左子树 -> 根结点 -> 右子树
inOrder(root=root.left)
in_order(root=root.left)
result.append(root.val)
inOrder(root=root.right)
in_order(root=root.right)
def postOrder(root):
"""
后序遍历二叉树
"""
""" 后序遍历二叉树 """
def post_order(root: typing.Optional[TreeNode]):
if root is None:
return
# 访问优先级:左子树 -> 右子树 -> 根结点
postOrder(root=root.left)
postOrder(root=root.right)
post_order(root=root.left)
post_order(root=root.right)
result.append(root.val)
@ -55,26 +57,24 @@ def postOrder(root):
if __name__ == "__main__":
# 初始化二叉树
# 这里借助了一个从数组直接生成二叉树的函数
root = list_to_tree(
arr=[1, 2, 3, 4, 5, 6, 7, None, None, None, None, None, None, None, None]
)
root = list_to_tree(arr=[1, 2, 3, 4, 5, 6, 7, None, None, None, None, None, None, None, None])
print("\n初始化二叉树\n")
print_tree(root)
# 前序遍历
result = []
preOrder(root)
result.clear()
pre_order(root)
print("\n前序遍历的结点打印序列 = ", result)
assert result == [1, 2, 4, 5, 3, 6, 7]
# 中序遍历
result = []
inOrder(root)
result.clear()
in_order(root)
print("\n中序遍历的结点打印序列 = ", result)
assert result == [4, 2, 5, 1, 6, 3, 7]
# 后序遍历
result = []
postOrder(root)
result.clear()
post_order(root)
print("\n后序遍历的结点打印序列 = ", result)
assert result == [4, 5, 2, 6, 7, 3, 1]

View File

@ -10,9 +10,19 @@ class TreeNode:
"""Definition for a binary tree node
"""
def __init__(self, val=None, left=None, right=None):
self.val = val
self.left = left
self.right = right
self.val = val # 结点值
self.height = 0 # 结点高度, avl 树会用到
self.left = left # 左子结点引用
self.right = right # 右子结点引用
def __str__(self): # 直接print时会好看一点
val = self.val
left_node_val = self.left.val if self.left else None
right_node_val = self.right.val if self.right else None
return "<TreeNode: {}, leftTreeNode: {}, rightTreeNode: {}>".format(val, left_node_val, right_node_val)
__repr__ = __str__
def list_to_tree(arr):
"""Generate a binary tree with a list

View File

@ -48,24 +48,21 @@ G. M. Adelson-Velsky 和 E. M. Landis 在其 1962 年发表的论文 "An algorit
=== "Python"
```python title="avl_tree.py"
class AVLTreeNode:
def __init__(
self,
val=None,
height: int = 0,
left: typing.Optional["AVLTreeNode"] = None,
right: typing.Optional["AVLTreeNode"] = None
):
self.val = val
self.height = height
self.left = left
self.right = right
""" AVL 树结点类 """
class TreeNode:
def __init__(self, val=None, left=None, right=None):
self.val = val # 结点值
self.height = 0 # 结点高度, avl 树会用到
self.left = left # 左子结点引用
self.right = right # 右子结点引用
def __str__(self):
def __str__(self): # 直接print时会好看一点
val = self.val
left_val = self.left.val if self.left else None
right_val = self.right.val if self.right else None
return "<AVLTreeNode: {}, leftAVLTreeNode: {}, rightAVLTreeNode: {}>".format(val, left_val, right_val)
left_node_val = self.left.val if self.left else None
right_node_val = self.right.val if self.right else None
return "<TreeNode: {}, leftTreeNode: {}, rightTreeNode: {}>".format(val, left_node_val, right_node_val)
__repr__ = __str__
```
=== "Go"
@ -125,31 +122,17 @@ G. M. Adelson-Velsky 和 E. M. Landis 在其 1962 年发表的论文 "An algorit
=== "Python"
```python title="avl_tree.py"
def height(node: typing.Optional[AVLTreeNode]) -> int:
"""
获取结点高度
Args:
node:起始结点
Returns: 高度 or -1
"""
""" 获取结点高度 """
def height(self, node: typing.Optional[TreeNode]) -> int:
# 空结点高度为 -1 ,叶结点高度为 0
if node is not None:
return node.height
return -1
def update_height(node: AVLTreeNode):
"""
更新结点高度
Args:
node: 要更新高度的结点
Returns: None
"""
""" 更新结点高度 """
def __update_height(self, node: TreeNode):
# 结点高度等于最高子树高度 + 1
node.height = max([height(node.left), height(node.right)]) + 1
node.height = max([self.height(node.left), self.height(node.right)]) + 1
```
=== "Go"
@ -207,20 +190,13 @@ G. M. Adelson-Velsky 和 E. M. Landis 在其 1962 年发表的论文 "An algorit
=== "Python"
```python title="avl_tree.py"
def balance_factor(node: AVLTreeNode) -> int:
"""
获取结点平衡因子
Args:
node: 要获取平衡因子的结点
Returns: 平衡因子
"""
""" 获取平衡因子 """
def balance_factor(self, node: TreeNode) -> int:
# 空结点平衡因子为 0
if node is None:
return 0
# 结点平衡因子 = 左子树高度 - 右子树高度
return height(node.left) - height(node.right)
return self.height(node.left) - self.height(node.right)
```
=== "Go"
@ -309,15 +285,16 @@ AVL 树的独特之处在于「旋转 Rotation」的操作其可 **在不影
=== "Python"
```python title="avl_tree.py"
def rightRotate(node: AVLTreeNode):
""" 右旋操作 """
def __right_rotate(self, node: TreeNode) -> TreeNode:
child = node.left
grand_child = child.right
# 以 child 为原点,将 node 向右旋转
child.right = node
node.left = grand_child
# 更新结点高度
update_height(node)
update_height(child)
self.__update_height(node)
self.__update_height(child)
# 返回旋转后子树的根节点
return child
```
@ -387,15 +364,16 @@ AVL 树的独特之处在于「旋转 Rotation」的操作其可 **在不影
=== "Python"
```python title="avl_tree.py"
def leftRotate(node: AVLTreeNode):
""" 左旋操作 """
def __left_rotate(self, node: TreeNode) -> TreeNode:
child = node.right
grand_child = child.left
# 以 child 为原点,将 node 向左旋转
child.left = node
node.right = grand_child
# 更新结点高度
update_height(node)
update_height(child)
self.__update_height(node)
self.__update_height(child)
# 返回旋转后子树的根节点
return child
```
@ -506,35 +484,28 @@ AVL 树的独特之处在于「旋转 Rotation」的操作其可 **在不影
=== "Python"
```python title="avl_tree.py"
def rotate(node: AVLTreeNode):
"""
执行旋转操作,使该子树重新恢复平衡
Args:
node: 要旋转的根结点
Returns: 旋转后的根结点
"""
""" 执行旋转操作,使该子树重新恢复平衡 """
def __rotate(self, node: TreeNode) -> TreeNode:
# 获取结点 node 的平衡因子
factor = balance_factor(node)
balance_factor = self.balance_factor(node)
# 左偏树
if factor > 1:
if balance_factor(node.left) >= 0:
if balance_factor > 1:
if self.balance_factor(node.left) >= 0:
# 右旋
return right_rotate(node)
return self.__right_rotate(node)
else:
# 先左旋后右旋
node.left = left_rotate(node.left)
return right_rotate(node)
node.left = self.__left_rotate(node.left)
return self.__right_rotate(node)
# 右偏树
elif factor < -1:
if balance_factor(node.right) <= 0:
elif balance_factor < -1:
if self.balance_factor(node.right) <= 0:
# 左旋
return left_rotate(node)
return self.__left_rotate(node)
else:
# 先右旋后左旋
node.right = right_rotate(node.right)
return left_rotate(node)
node.right = self.__right_rotate(node.right)
return self.__left_rotate(node)
# 平衡树,无需旋转,直接返回
return node
```
@ -611,42 +582,27 @@ AVL 树的独特之处在于「旋转 Rotation」的操作其可 **在不影
=== "Python"
```python title="avl_tree.py"
def insert(val) -> AVLTreeNode:
"""
插入结点
Args:
val: 结点的值
""" 插入结点 """
def insert(self, val) -> TreeNode:
self.root = self.__insert_helper(self.root, val)
return self.root
Returns:
node: 插入结点后的根结点
"""
root = insert_helper(root, val)
return root
def insert_helper(node: typing.Optional[AVLTreeNode], val: int) -> AVLTreeNode:
"""
递归插入结点(辅助函数)
Args:
node: 要插入的根结点
val: 要插入的结点的值
Returns: 插入结点后的根结点
"""
""" 递归插入结点(辅助函数)"""
def __insert_helper(self, node: typing.Optional[TreeNode], val: int) -> TreeNode:
if node is None:
return AVLTreeNode(val)
return TreeNode(val)
# 1. 查找插入位置,并插入结点
if val < node.val:
node.left = insert_helper(node.left, val)
node.left = self.__insert_helper(node.left, val)
elif val > node.val:
node.right = insert_helper(node.right, val)
node.right = self.__insert_helper(node.right, val)
else:
# 重复结点不插入,直接返回
return node
# 更新结点高度
update_height(node)
self.__update_height(node)
# 2. 执行旋转操作,使该子树重新恢复平衡
return rotate(node)
return self.__rotate(node)
```
=== "Go"
@ -743,35 +699,20 @@ AVL 树的独特之处在于「旋转 Rotation」的操作其可 **在不影
=== "Python"
```python title="avl_tree.py"
def remove(val: int):
"""
删除结点
Args:
val: 要删除的结点的值
Returns:
"""
root = remove_helper(root, val)
""" 删除结点 """
def remove(self, val: int):
root = self.__remove_helper(self.root, val)
return root
def remove_helper(node: typing.Optional[AVLTreeNode], val: int) -> typing.Optional[AVLTreeNode]:
"""
递归删除结点(辅助函数)
Args:
node: 删除的起始结点
val: 要删除的结点的值
Returns: 删除目标结点后的起始结点
"""
""" 递归删除结点(辅助函数) """
def __remove_helper(self, node: typing.Optional[TreeNode], val: int) -> typing.Optional[TreeNode]:
if node is None:
return None
# 1. 查找结点,并删除之
if val < node.val:
node.left = remove_helper(node.left, val)
node.left = self.__remove_helper(node.left, val)
elif val > node.val:
node.right = remove_helper(node.right, val)
node.right = self.__remove_helper(node.right, val)
else:
if node.left is None or node.right is None:
child = node.left or node.right
@ -782,17 +723,16 @@ AVL 树的独特之处在于「旋转 Rotation」的操作其可 **在不影
else:
node = child
else: # 子结点数量 = 2 ,则将中序遍历的下个结点删除,并用该结点替换当前结点
temp = min_node(node.right)
node.right = remove_helper(node.right, temp.val)
temp = self.min_node(node.right)
node.right = self.__remove_helper(node.right, temp.val)
node.val = temp.val
# 更新结点高度
update_height(node)
self.__update_height(node)
# 2. 执行旋转操作,使该子树重新恢复平衡
return rotate(node)
return self.__rotate(node)
def min_node(node: typing.Optional[AVLTreeNode]) -> typing.Optional[AVLTreeNode]:
# 获取最小结点
""" 获取最小结点 """
def min_node(self, node: typing.Optional[TreeNode]) -> typing.Optional[TreeNode]:
if node is None:
return None
# 循环访问左子结点,直到叶结点时为最小结点,跳出

View File

@ -82,11 +82,9 @@ comments: true
=== "Python"
```python title="binary_search_tree.py"
def search(self, num):
"""
查找结点
"""
cur = self.get_root()
""" 查找结点 """
def search(self, num: int) -> typing.Optional[TreeNode]:
cur = self.root
# 循环查找,越过叶结点后跳出
while cur is not None:
# 目标结点在 root 的右子树中
@ -99,7 +97,6 @@ comments: true
else:
break
return cur
```
=== "Go"
@ -245,11 +242,9 @@ comments: true
=== "Python"
```python title="binary_search_tree.py"
def insert(self, num):
"""
插入结点
"""
root = self.get_root()
""" 插入结点 """
def insert(self, num: int) -> typing.Optional[TreeNode]:
root = self.root
# 若树为空,直接提前返回
if root is None:
return None
@ -530,11 +525,9 @@ comments: true
=== "Python"
```python title="binary_search_tree.py"
def remove(self, num):
"""
删除结点
"""
root = self.get_root()
""" 删除结点 """
def remove(self, num: int) -> typing.Optional[TreeNode]:
root = self.root
# 若树为空,直接提前返回
if root is None:
return None
@ -577,10 +570,8 @@ comments: true
cur.val = tmp
return cur
def min(self, root):
"""
获取最小结点
"""
""" 获取最小结点 """
def min(self, root: typing.Optional[TreeNode]) -> typing.Optional[TreeNode]:
if root is None:
return root

View File

@ -33,12 +33,19 @@ comments: true
=== "Python"
```python title=""
class TreeNode:
""" 链表结点类 """
class TreeNode:
def __init__(self, val=None, left=None, right=None):
self.val = val # 结点值
self.left = left # 左子结点指针
self.right = right # 右子结点指针
def __str__(self):
val = self.val
left_node_val = self.left.val if self.left else None
right_node_val = self.right.val if self.right else None
return "<TreeNode: {}, leftTreeNode: {}, rightTreeNode: {}>".format(val, left_node_val, right_node_val)
```
=== "Go"
@ -423,7 +430,8 @@ comments: true
=== "Python"
```python title="binary_tree_bfs.py"
def hierOrder(root):
""" 层序遍历 """
def hier_order(root):
# 初始化队列,加入根结点
queue = collections.deque()
queue.append(root)
@ -612,42 +620,36 @@ comments: true
=== "Python"
```python title="binary_tree_dfs.py"
def preOrder(root):
"""
前序遍历二叉树
"""
""" 前序遍历二叉树 """
def pre_order(root: typing.Optional[TreeNode]):
if root is None:
return
# 访问优先级:根结点 -> 左子树 -> 右子树
result.append(root.val)
preOrder(root=root.left)
preOrder(root=root.right)
pre_order(root=root.left)
pre_order(root=root.right)
def inOrder(root):
"""
中序遍历二叉树
"""
""" 中序遍历二叉树 """
def in_order(root: typing.Optional[TreeNode]):
if root is None:
return
# 访问优先级:左子树 -> 根结点 -> 右子树
inOrder(root=root.left)
in_order(root=root.left)
result.append(root.val)
inOrder(root=root.right)
in_order(root=root.right)
def postOrder(root):
"""
后序遍历二叉树
"""
""" 后序遍历二叉树 """
def post_order(root: typing.Optional[TreeNode]):
if root is None:
return
# 访问优先级:左子树 -> 右子树 -> 根结点
postOrder(root=root.left)
postOrder(root=root.right)
post_order(root=root.left)
post_order(root=root.right)
result.append(root.val)
```