diff --git a/docs/chapter_computational_complexity/performance_evaluation.md b/docs/chapter_computational_complexity/performance_evaluation.md index 6c236c864..45288720f 100644 --- a/docs/chapter_computational_complexity/performance_evaluation.md +++ b/docs/chapter_computational_complexity/performance_evaluation.md @@ -32,10 +32,16 @@ comments: true 既然实际测试具有很大的局限性,那么我们是否可以仅通过一些计算,就获知算法的效率水平呢?答案是肯定的,我们将此估算方法称为「复杂度分析 Complexity Analysis」或「渐近复杂度分析 Asymptotic Complexity Analysis」。 -**复杂度分析评估随着输入数据量的增长,算法的运行时间和占用空间的增长趋势**。根据时间和空间两方面,复杂度可分为「时间复杂度 Time Complexity」和「空间复杂度 Space Complexity」。 +**复杂度分析评估的是算法运行效率随着输入数据量增多时的增长趋势**。这句话有些拗口,我们可以将其分为三个重点来理解: + +- “算法运行效率”可分为“运行时间”和“占用空间”,进而可将复杂度分为「时间复杂度 Time Complexity」和「空间复杂度 Space Complexity」。 +- “随着输入数据量增多时”代表复杂度与输入数据量有关,反映算法运行效率与输入数据量之间的关系; +- “增长趋势”表示复杂度分析不关心算法具体使用了多少时间或占用了多少空间,而是给出一种“趋势性分析”; **复杂度分析克服了实际测试方法的弊端**。一是独立于测试环境,分析结果适用于所有运行平台。二是可以体现不同数据量下的算法效率,尤其是可以反映大数据量下的算法性能。 +如果感觉对复杂度分析的概念一知半解,无需担心,后续章节会展开介绍。 + ## 2.1.3. 复杂度分析重要性 复杂度分析给出一把评价算法效率的“标尺”,告诉我们执行某个算法需要多少时间和空间资源,也让我们可以开展不同算法之间的效率对比。