diff --git a/zh-hant/docs/chapter_hashing/hash_algorithm.md b/zh-hant/docs/chapter_hashing/hash_algorithm.md index fc76881a4..55c9ac225 100644 --- a/zh-hant/docs/chapter_hashing/hash_algorithm.md +++ b/zh-hant/docs/chapter_hashing/hash_algorithm.md @@ -52,7 +52,7 @@ index = hash(key) % capacity 觀察發現,每種雜湊演算法的最後一步都是對大質數 $1000000007$ 取模,以確保雜湊值在合適的範圍內。值得思考的是,為什麼要強調對質數取模,或者說對合數取模的弊端是什麼?這是一個有趣的問題。 -先丟擲結論:**使用大質數作為模數,可以最大化地保證雜湊值的均勻分佈**。因為質數不與其他數字存在公約數,可以減少因取模操作而產生的週期性模式,從而避免雜湊衝突。 +先說結論:**使用大質數作為模數,可以最大化地保證雜湊值的均勻分佈**。因為質數不與其他數字存在公約數,可以減少因取模操作而產生的週期性模式,從而避免雜湊衝突。 舉個例子,假設我們選擇合數 $9$ 作為模數,它可以被 $3$ 整除,那麼所有可以被 $3$ 整除的 `key` 都會被對映到 $0$、$3$、$6$ 這三個雜湊值。