This commit is contained in:
QiLOL 2025-01-02 18:44:33 -05:00
parent 2a955f937c
commit 5869a6307f

View File

@ -1,25 +1,25 @@
# Heap
A <u>heap</u> is a complete binary tree that satisfies specific conditions and can be mainly divided into two types, as shown in the figure below.
A <u>heap</u> is a complete binary tree that satisfies specific conditions and can be mainly categorized into two types, as shown in the figure below.
- <u>Min heap</u>: The value of any node $\leq$ the values of its child nodes.
- <u>Max heap</u>: The value of any node $\geq$ the values of its child nodes.
![Min heap and max heap](heap.assets/min_heap_and_max_heap.png)
As a special case of a complete binary tree, heaps have the following characteristics:
As a special case of a complete binary tree, a heap has the following characteristics:
- The bottom layer nodes are filled from left to right, and nodes in other layers are fully filled.
- The root node of the binary tree is called the "heap top," and the bottom-rightmost node is called the "heap bottom."
- For max heaps (min heaps), the value of the heap top element (root node) is the largest (smallest).
- The root node of the binary tree is called the "top" of the heap, and the bottom-rightmost node is called the "bottom" of the heap.
- For max heaps (min heaps), the value of the top element (root) is the largest (smallest) among all elements.
## Common operations on heaps
## Common heap operations
It should be noted that many programming languages provide a <u>priority queue</u>, which is an abstract data structure defined as a queue with priority sorting.
In fact, **heaps are often used to implement priority queues, with max heaps equivalent to priority queues where elements are dequeued in descending order**. From a usage perspective, we can consider "priority queue" and "heap" as equivalent data structures. Therefore, this book does not make a special distinction between the two, uniformly referring to them as "heap."
In practice, **heaps are often used to implement priority queues. A max-heap corresponds to a priority queue where elements are dequeued in descending order.**. From a usage perspective, we can consider "priority queue" and "heap" as equivalent data structures. Therefore, this book does not make a special distinction between the two, uniformly referring to them as "heap".
Common operations on heaps are shown in the table below, and the method names depend on the programming language.
Common operations on heaps are shown in the table below, and the method names may vary based on the programming language.
<p align="center"> Table <id> &nbsp; Efficiency of Heap Operations </p>
@ -33,45 +33,45 @@ Common operations on heaps are shown in the table below, and the method names de
In practice, we can directly use the heap class (or priority queue class) provided by programming languages.
Similar to sorting algorithms where we have "ascending order" and "descending order," we can switch between "min heap" and "max heap" by setting a `flag` or modifying the `Comparator`. The code is as follows:
Similar to sorting algorithms where we have "ascending order" and "descending order", we can switch between "min heap" and "max heap" by setting a `flag` or modifying the `Comparator`. The code is as follows:
=== "Python"
```python title="heap.py"
# 初始化小顶堆
# Initialize a min-heap
min_heap, flag = [], 1
# 初始化大顶堆
# Initialize a max-heap
max_heap, flag = [], -1
# Python 的 heapq 模块默认实现小顶堆
# 考虑将“元素取负”后再入堆,这样就可以将大小关系颠倒,从而实现大顶堆
# 在本示例中flag = 1 时对应小顶堆flag = -1 时对应大顶堆
# Python's heapq module implements a min-heap by default
# By negating the elements before pushing them to the heap, we invert the order and thus implement a max-heap
# In this example, flag = 1 corresponds to a min-heap, while flag = -1 corresponds to a max-heap
# 元素入堆
# Push elements into the heap
heapq.heappush(max_heap, flag * 1)
heapq.heappush(max_heap, flag * 3)
heapq.heappush(max_heap, flag * 2)
heapq.heappush(max_heap, flag * 5)
heapq.heappush(max_heap, flag * 4)
# 获取堆顶元素
# Retrieve the top element of the heap
peek: int = flag * max_heap[0] # 5
# 堆顶元素出堆
# 出堆元素会形成一个从大到小的序列
# Pop the top element of the heap
# The popped elements will form a sequence in descending order
val = flag * heapq.heappop(max_heap) # 5
val = flag * heapq.heappop(max_heap) # 4
val = flag * heapq.heappop(max_heap) # 3
val = flag * heapq.heappop(max_heap) # 2
val = flag * heapq.heappop(max_heap) # 1
# 获取堆大小
# Get the size of the heap
size: int = len(max_heap)
# 判断堆是否为空
# Check if the heap is empty
is_empty: bool = not max_heap
# 输入列表并建堆
# Create a heap from a list
min_heap: list[int] = [1, 3, 2, 5, 4]
heapq.heapify(min_heap)
```
@ -79,37 +79,37 @@ Similar to sorting algorithms where we have "ascending order" and "descending or
=== "C++"
```cpp title="heap.cpp"
/* 初始化堆 */
// 初始化小顶堆
/* Initialize a heap */
// Initialize a min-heap
priority_queue<int, vector<int>, greater<int>> minHeap;
// 初始化大顶堆
// Initialize a max-heap
priority_queue<int, vector<int>, less<int>> maxHeap;
/* 元素入堆 */
/* Push elements into the heap */
maxHeap.push(1);
maxHeap.push(3);
maxHeap.push(2);
maxHeap.push(5);
maxHeap.push(4);
/* 获取堆顶元素 */
/* Retrieve the top element of the heap */
int peek = maxHeap.top(); // 5
/* 堆顶元素出堆 */
// 出堆元素会形成一个从大到小的序列
/* Pop the top element of the heap */
// The popped elements will form a sequence in descending order
maxHeap.pop(); // 5
maxHeap.pop(); // 4
maxHeap.pop(); // 3
maxHeap.pop(); // 2
maxHeap.pop(); // 1
/* 获取堆大小 */
/* Get the size of the heap */
int size = maxHeap.size();
/* 判断堆是否为空 */
/* Check if the heap is empty */
bool isEmpty = maxHeap.empty();
/* 输入列表并建堆 */
/* Create a heap from a list */
vector<int> input{1, 3, 2, 5, 4};
priority_queue<int, vector<int>, greater<int>> minHeap(input.begin(), input.end());
```
@ -117,206 +117,206 @@ Similar to sorting algorithms where we have "ascending order" and "descending or
=== "Java"
```java title="heap.java"
/* 初始化堆 */
// 初始化小顶堆
/* Initialize a heap */
// Initialize a min-heap
Queue<Integer> minHeap = new PriorityQueue<>();
// 初始化大顶堆(使用 lambda 表达式修改 Comparator 即可
// Initialize a max-heap (Simply modify the Comparator using a lambda expression
Queue<Integer> maxHeap = new PriorityQueue<>((a, b) -> b - a);
/* 元素入堆 */
/* Push elements into the heap */
maxHeap.offer(1);
maxHeap.offer(3);
maxHeap.offer(2);
maxHeap.offer(5);
maxHeap.offer(4);
/* 获取堆顶元素 */
/* Retrieve the top element of the heap */
int peek = maxHeap.peek(); // 5
/* 堆顶元素出堆 */
// 出堆元素会形成一个从大到小的序列
/* Pop the top element of the heap */
// The popped elements will form a sequence in descending order
peek = maxHeap.poll(); // 5
peek = maxHeap.poll(); // 4
peek = maxHeap.poll(); // 3
peek = maxHeap.poll(); // 2
peek = maxHeap.poll(); // 1
/* 获取堆大小 */
/* Get the size of the heap */
int size = maxHeap.size();
/* 判断堆是否为空 */
/* Check if the heap is empty */
boolean isEmpty = maxHeap.isEmpty();
/* 输入列表并建堆 */
/* Create a heap from a list */
minHeap = new PriorityQueue<>(Arrays.asList(1, 3, 2, 5, 4));
```
=== "C#"
```csharp title="heap.cs"
/* 初始化堆 */
// 初始化小顶堆
/* Initialize a heap */
// Initialize a min-heap
PriorityQueue<int, int> minHeap = new();
// 初始化大顶堆(使用 lambda 表达式修改 Comparator 即可)
// Initialize a max-heap (Simply modify the Comparator using a lambda expression)
PriorityQueue<int, int> maxHeap = new(Comparer<int>.Create((x, y) => y - x));
/* 元素入堆 */
/* Push elements into the heap */
maxHeap.Enqueue(1, 1);
maxHeap.Enqueue(3, 3);
maxHeap.Enqueue(2, 2);
maxHeap.Enqueue(5, 5);
maxHeap.Enqueue(4, 4);
/* 获取堆顶元素 */
/* Retrieve the top element of the heap */
int peek = maxHeap.Peek();//5
/* 堆顶元素出堆 */
// 出堆元素会形成一个从大到小的序列
/* Pop the top element of the heap */
// The popped elements will form a sequence in descending order
peek = maxHeap.Dequeue(); // 5
peek = maxHeap.Dequeue(); // 4
peek = maxHeap.Dequeue(); // 3
peek = maxHeap.Dequeue(); // 2
peek = maxHeap.Dequeue(); // 1
/* 获取堆大小 */
/* Get the size of the heap */
int size = maxHeap.Count;
/* 判断堆是否为空 */
/* Check if the heap is empty */
bool isEmpty = maxHeap.Count == 0;
/* 输入列表并建堆 */
/* Create a heap from a list */
minHeap = new PriorityQueue<int, int>([(1, 1), (3, 3), (2, 2), (5, 5), (4, 4)]);
```
=== "Go"
```go title="heap.go"
// Go 语言中可以通过实现 heap.Interface 来构建整数大顶堆
// 实现 heap.Interface 需要同时实现 sort.Interface
// In Go, we can construct a max-heap of integers by implementing heap.Interface
// Note that implementing heap.Interface requires also implementing sort.Interface
type intHeap []any
// Push heap.Interface 的方法,实现推入元素到堆
// Push method of heap.Interface, which pushes an element into the heap
func (h *intHeap) Push(x any) {
// Push 和 Pop 使用 pointer receiver 作为参数
// 因为它们不仅会对切片的内容进行调整,还会修改切片的长度。
// Both Push and Pop use a pointer receiver
// because they not only adjust the elements of the slice but also change its length
*h = append(*h, x.(int))
}
// Pop heap.Interface 的方法,实现弹出堆顶元素
// Pop method of heap.Interface, which removes the top element of the heap
func (h *intHeap) Pop() any {
// 待出堆元素存放在最后
// The element to pop from the heap is stored at the end
last := (*h)[len(*h)-1]
*h = (*h)[:len(*h)-1]
return last
}
// Len sort.Interface 的方法
// Len method of sort.Interface
func (h *intHeap) Len() int {
return len(*h)
}
// Less sort.Interface 的方法
// Less method of sort.Interface
func (h *intHeap) Less(i, j int) bool {
// 如果实现小顶堆,则需要调整为小于号
// If you want to implement a min-heap, you would change this to a less-than comparison
return (*h)[i].(int) > (*h)[j].(int)
}
// Swap sort.Interface 的方法
// Swap method of sort.Interface
func (h *intHeap) Swap(i, j int) {
(*h)[i], (*h)[j] = (*h)[j], (*h)[i]
}
// Top 获取堆顶元素
// Top Retrieve the top element of the heap
func (h *intHeap) Top() any {
return (*h)[0]
}
/* Driver Code */
func TestHeap(t *testing.T) {
/* 初始化堆 */
// 初始化大顶堆
/* Initialize a heap */
// Initialize a max-heap
maxHeap := &intHeap{}
heap.Init(maxHeap)
/* 元素入堆 */
// 调用 heap.Interface 的方法,来添加元素
/* Push elements into the heap */
// Call the methods of heap.Interface to add elements
heap.Push(maxHeap, 1)
heap.Push(maxHeap, 3)
heap.Push(maxHeap, 2)
heap.Push(maxHeap, 4)
heap.Push(maxHeap, 5)
/* 获取堆顶元素 */
/* Retrieve the top element of the heap */
top := maxHeap.Top()
fmt.Printf("堆顶元素为 %d\n", top)
fmt.Printf("The top element of the heap is %d\n", top)
/* 堆顶元素出堆 */
// 调用 heap.Interface 的方法,来移除元素
/* Pop the top element of the heap */
// Call the methods of heap.Interface to remove elements
heap.Pop(maxHeap) // 5
heap.Pop(maxHeap) // 4
heap.Pop(maxHeap) // 3
heap.Pop(maxHeap) // 2
heap.Pop(maxHeap) // 1
/* 获取堆大小 */
/* Get the size of the heap */
size := len(*maxHeap)
fmt.Printf("堆元素数量为 %d\n", size)
fmt.Printf("The number of elements in the heap is %d\n", size)
/* 判断堆是否为空 */
/* Check if the heap is empty */
isEmpty := len(*maxHeap) == 0
fmt.Printf("堆是否为空 %t\n", isEmpty)
fmt.Printf("Is the heap empty? %t\n", isEmpty)
}
```
=== "Swift"
```swift title="heap.swift"
/* 初始化堆 */
// Swift 的 Heap 类型同时支持最大堆和最小堆,且需要引入 swift-collections
/* Initialize a heap */
// Swifts Heap type supports both max-heaps and min-heaps, and need the swift-collections library
var heap = Heap<Int>()
/* 元素入堆 */
/* Push elements into the heap */
heap.insert(1)
heap.insert(3)
heap.insert(2)
heap.insert(5)
heap.insert(4)
/* 获取堆顶元素 */
/* Retrieve the top element of the heap */
var peek = heap.max()!
/* 堆顶元素出堆 */
/* Pop the top element of the heap */
peek = heap.removeMax() // 5
peek = heap.removeMax() // 4
peek = heap.removeMax() // 3
peek = heap.removeMax() // 2
peek = heap.removeMax() // 1
/* 获取堆大小 */
/* Get the size of the heap */
let size = heap.count
/* 判断堆是否为空 */
/* Check if the heap is empty */
let isEmpty = heap.isEmpty
/* 输入列表并建堆 */
/* Create a heap from a list */
let heap2 = Heap([1, 3, 2, 5, 4])
```
=== "JS"
```javascript title="heap.js"
// JavaScript 未提供内置 Heap 类
// JavaScript does not provide a built-in Heap class
```
=== "TS"
```typescript title="heap.ts"
// TypeScript 未提供内置 Heap 类
// TypeScript does not provide a built-in Heap class
```
=== "Dart"
```dart title="heap.dart"
// Dart 未提供内置 Heap 类
// Dart does not provide a built-in Heap class
```
=== "Rust"
@ -325,80 +325,80 @@ Similar to sorting algorithms where we have "ascending order" and "descending or
use std::collections::BinaryHeap;
use std::cmp::Reverse;
/* 初始化堆 */
// 初始化小顶堆
/* Initialize a heap */
// Initialize a min-heap
let mut min_heap = BinaryHeap::<Reverse<i32>>::new();
// 初始化大顶堆
// Initialize a max-heap
let mut max_heap = BinaryHeap::new();
/* 元素入堆 */
/* Push elements into the heap */
max_heap.push(1);
max_heap.push(3);
max_heap.push(2);
max_heap.push(5);
max_heap.push(4);
/* 获取堆顶元素 */
/* Retrieve the top element of the heap */
let peek = max_heap.peek().unwrap(); // 5
/* 堆顶元素出堆 */
// 出堆元素会形成一个从大到小的序列
/* Pop the top element of the heap */
// The popped elements will form a sequence in descending order
let peek = max_heap.pop().unwrap(); // 5
let peek = max_heap.pop().unwrap(); // 4
let peek = max_heap.pop().unwrap(); // 3
let peek = max_heap.pop().unwrap(); // 2
let peek = max_heap.pop().unwrap(); // 1
/* 获取堆大小 */
/* Get the size of the heap */
let size = max_heap.len();
/* 判断堆是否为空 */
/* Check if the heap is empty */
let is_empty = max_heap.is_empty();
/* 输入列表并建堆 */
/* Create a heap from a list */
let min_heap = BinaryHeap::from(vec![Reverse(1), Reverse(3), Reverse(2), Reverse(5), Reverse(4)]);
```
=== "C"
```c title="heap.c"
// C 未提供内置 Heap 类
// C does not provide a built-in Heap class
```
=== "Kotlin"
```kotlin title="heap.kt"
/* 初始化堆 */
// 初始化小顶堆
/* Initialize a heap */
// Initialize a min-heap
var minHeap = PriorityQueue<Int>()
// 初始化大顶堆(使用 lambda 表达式修改 Comparator 即可
// Initialize a max-heap (Simply modify the Comparator using a lambda expression
val maxHeap = PriorityQueue { a: Int, b: Int -> b - a }
/* 元素入堆 */
/* Push elements into the heap */
maxHeap.offer(1)
maxHeap.offer(3)
maxHeap.offer(2)
maxHeap.offer(5)
maxHeap.offer(4)
/* 获取堆顶元素 */
/* Retrieve the top element of the heap */
var peek = maxHeap.peek() // 5
/* 堆顶元素出堆 */
// 出堆元素会形成一个从大到小的序列
/* Pop the top element of the heap */
// The popped elements will form a sequence in descending order
peek = maxHeap.poll() // 5
peek = maxHeap.poll() // 4
peek = maxHeap.poll() // 3
peek = maxHeap.poll() // 2
peek = maxHeap.poll() // 1
/* 获取堆大小 */
/* Get the size of the heap */
val size = maxHeap.size
/* 判断堆是否为空 */
/* Check if the heap is empty */
val isEmpty = maxHeap.isEmpty()
/* 输入列表并建堆 */
/* Create a heap from a list */
minHeap = PriorityQueue(mutableListOf(1, 3, 2, 5, 4))
```
@ -414,17 +414,17 @@ Similar to sorting algorithms where we have "ascending order" and "descending or
```
??? pythontutor "可视化运行"
??? pythontutor "Visualize the execution"
https://pythontutor.com/render.html#code=import%20heapq%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E5%B0%8F%E9%A1%B6%E5%A0%86%0A%20%20%20%20min_heap,%20flag%20%3D%20%5B%5D,%201%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%E5%A4%A7%E9%A1%B6%E5%A0%86%0A%20%20%20%20max_heap,%20flag%20%3D%20%5B%5D,%20-1%0A%20%20%20%20%0A%20%20%20%20%23%20Python%20%E7%9A%84%20heapq%20%E6%A8%A1%E5%9D%97%E9%BB%98%E8%AE%A4%E5%AE%9E%E7%8E%B0%E5%B0%8F%E9%A1%B6%E5%A0%86%0A%20%20%20%20%23%20%E8%80%83%E8%99%91%E5%B0%86%E2%80%9C%E5%85%83%E7%B4%A0%E5%8F%96%E8%B4%9F%E2%80%9D%E5%90%8E%E5%86%8D%E5%85%A5%E5%A0%86%EF%BC%8C%E8%BF%99%E6%A0%B7%E5%B0%B1%E5%8F%AF%E4%BB%A5%E5%B0%86%E5%A4%A7%E5%B0%8F%E5%85%B3%E7%B3%BB%E9%A2%A0%E5%80%92%EF%BC%8C%E4%BB%8E%E8%80%8C%E5%AE%9E%E7%8E%B0%E5%A4%A7%E9%A1%B6%E5%A0%86%0A%20%20%20%20%23%20%E5%9C%A8%E6%9C%AC%E7%A4%BA%E4%BE%8B%E4%B8%AD%EF%BC%8Cflag%20%3D%201%20%E6%97%B6%E5%AF%B9%E5%BA%94%E5%B0%8F%E9%A1%B6%E5%A0%86%EF%BC%8Cflag%20%3D%20-1%20%E6%97%B6%E5%AF%B9%E5%BA%94%E5%A4%A7%E9%A1%B6%E5%A0%86%0A%20%20%20%20%0A%20%20%20%20%23%20%E5%85%83%E7%B4%A0%E5%85%A5%E5%A0%86%0A%20%20%20%20heapq.heappush%28max_heap,%20flag%20*%201%29%0A%20%20%20%20heapq.heappush%28max_heap,%20flag%20*%203%29%0A%20%20%20%20heapq.heappush%28max_heap,%20flag%20*%202%29%0A%20%20%20%20heapq.heappush%28max_heap,%20flag%20*%205%29%0A%20%20%20%20heapq.heappush%28max_heap,%20flag%20*%204%29%0A%20%20%20%20%0A%20%20%20%20%23%20%E8%8E%B7%E5%8F%96%E5%A0%86%E9%A1%B6%E5%85%83%E7%B4%A0%0A%20%20%20%20peek%20%3D%20flag%20*%20max_heap%5B0%5D%20%23%205%0A%20%20%20%20%0A%20%20%20%20%23%20%E5%A0%86%E9%A1%B6%E5%85%83%E7%B4%A0%E5%87%BA%E5%A0%86%0A%20%20%20%20%23%20%E5%87%BA%E5%A0%86%E5%85%83%E7%B4%A0%E4%BC%9A%E5%BD%A2%E6%88%90%E4%B8%80%E4%B8%AA%E4%BB%8E%E5%A4%A7%E5%88%B0%E5%B0%8F%E7%9A%84%E5%BA%8F%E5%88%97%0A%20%20%20%20val%20%3D%20flag%20*%20heapq.heappop%28max_heap%29%20%23%205%0A%20%20%20%20val%20%3D%20flag%20*%20heapq.heappop%28max_heap%29%20%23%204%0A%20%20%20%20val%20%3D%20flag%20*%20heapq.heappop%28max_heap%29%20%23%203%0A%20%20%20%20val%20%3D%20flag%20*%20heapq.heappop%28max_heap%29%20%23%202%0A%20%20%20%20val%20%3D%20flag%20*%20heapq.heappop%28max_heap%29%20%23%201%0A%20%20%20%20%0A%20%20%20%20%23%20%E8%8E%B7%E5%8F%96%E5%A0%86%E5%A4%A7%E5%B0%8F%0A%20%20%20%20size%20%3D%20len%28max_heap%29%0A%20%20%20%20%0A%20%20%20%20%23%20%E5%88%A4%E6%96%AD%E5%A0%86%E6%98%AF%E5%90%A6%E4%B8%BA%E7%A9%BA%0A%20%20%20%20is_empty%20%3D%20not%20max_heap%0A%20%20%20%20%0A%20%20%20%20%23%20%E8%BE%93%E5%85%A5%E5%88%97%E8%A1%A8%E5%B9%B6%E5%BB%BA%E5%A0%86%0A%20%20%20%20min_heap%20%3D%20%5B1,%203,%202,%205,%204%5D%0A%20%20%20%20heapq.heapify%28min_heap%29&cumulative=false&curInstr=3&heapPrimitives=nevernest&mode=display&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false
## Implementation of heaps
## Implementation of the heap
The following implementation is of a max heap. To convert it into a min heap, simply invert all size logic comparisons (for example, replace $\geq$ with $\leq$). Interested readers are encouraged to implement it on their own.
### Storage and representation of heaps
### Heap storage and representation
As mentioned in the "Binary Trees" section, complete binary trees are well-suited for array representation. Since heaps are a type of complete binary tree, **we will use arrays to store heaps**.
As mentioned in the "Binary Trees" section, a complete binary tree can be efficiently represented with an array. Since heaps are a type of complete binary tree, **we will use arrays to store heaps**.
When using an array to represent a binary tree, elements represent node values, and indexes represent node positions in the binary tree. **Node pointers are implemented through an index mapping formula**.
@ -448,9 +448,9 @@ The top element of the heap is the root node of the binary tree, which is also t
### Inserting an element into the heap
Given an element `val`, we first add it to the bottom of the heap. After addition, since `val` may be larger than other elements in the heap, the heap's integrity might be compromised, **thus it's necessary to repair the path from the inserted node to the root node**. This operation is called <u>heapifying</u>.
Given an element `val`, we first add it to the bottom of the heap. After addition, since `val` may be larger than other elements in the heap, the heap's integrity might be compromised, **thus it's necessary to repair the path from the inserted node to the root node**. This operation is called <u>heapify</u>.
Considering starting from the node inserted, **perform heapify from bottom to top**. As shown in the figure below, we compare the value of the inserted node with its parent node, and if the inserted node is larger, we swap them. Then continue this operation, repairing each node in the heap from bottom to top until passing the root node or encountering a node that does not need to be swapped.
Considering starting from the node inserted, **perform heapify from bottom to top**. As shown in the figure below, we compare the value of the inserted node with its parent node, and if the inserted node is larger, we swap them. Then continue this operation, repairing each node in the heap from bottom to top until reaching the root or a node that does not need swapping.
=== "<1>"
![Steps of element insertion into the heap](heap.assets/heap_push_step1.png)
@ -487,13 +487,13 @@ Given a total of $n$ nodes, the height of the tree is $O(\log n)$. Hence, the lo
### Removing the top element from the heap
The top element of the heap is the root node of the binary tree, that is, the first element of the list. If we directly remove the first element from the list, all node indexes in the binary tree would change, making it difficult to use heapify for repairs subsequently. To minimize changes in element indexes, we use the following steps.
The top element of the heap is the root node of the binary tree, that is, the first element of the list. If we directly remove the first element from the list, all node indexes in the binary tree will change, making it difficult to use heapify for subsequent repairs. To minimize changes in element indexes, we use the following steps.
1. Swap the top element with the bottom element of the heap (swap the root node with the rightmost leaf node).
2. After swapping, remove the bottom of the heap from the list (note, since it has been swapped, what is actually being removed is the original top element).
2. After swapping, remove the bottom of the heap from the list (note that since it has been swapped, the original top element is actually being removed).
3. Starting from the root node, **perform heapify from top to bottom**.
As shown in the figure below, **the direction of "heapify from top to bottom" is opposite to "heapify from bottom to top"**. We compare the value of the root node with its two children and swap it with the largest child. Then repeat this operation until passing the leaf node or encountering a node that does not need to be swapped.
As shown in the figure below, **the direction of "heapify from top to bottom" is opposite to "heapify from bottom to top"**. We compare the value of the root node with its two children and swap it with the largest child. Then, repeat this operation until reaching the leaf node or encountering a node that does not need to be swapped.
=== "<1>"
![Steps of removing the top element from the heap](heap.assets/heap_pop_step1.png)
@ -534,5 +534,5 @@ Similar to the element insertion operation, the time complexity of the top eleme
## Common applications of heaps
- **Priority Queue**: Heaps are often the preferred data structure for implementing priority queues, with both enqueue and dequeue operations having a time complexity of $O(\log n)$, and building a queue having a time complexity of $O(n)$, all of which are very efficient.
- **Heap Sort**: Given a set of data, we can create a heap from them and then continually perform element removal operations to obtain ordered data. However, we usually use a more elegant method to implement heap sort, as detailed in the "Heap Sort" section.
- **Finding the Largest $k$ Elements**: This is a classic algorithm problem and also a typical application, such as selecting the top 10 hot news for Weibo hot search, picking the top 10 selling products, etc.
- **Heap Sort**: Given a set of data, we can create a heap from them and then continually perform element removal operations to obtain ordered data. However, there is a more elegant way to implement heap sort, which is explained in the "Heap Sort" chapter.
- **Finding the Largest $k$ Elements**: This is a classic algorithm problem and also a common use case, such as selecting the top 10 hot news for Weibo hot search, picking the top 10 selling products, etc.