Fix a mistake in the terminology of binary tree.

This commit is contained in:
Yudong Jin 2022-12-18 15:42:06 +08:00
parent 5ce041e245
commit 3d2d978f22

View File

@ -110,17 +110,16 @@ comments: true
## 二叉树常见术语
「根结点 Root Node」二叉树最顶层的结点其没有父结点
二叉树的术语较多,建议尽量理解并记住。后续可能遗忘,可以在需要使用时回来查看确认。
「叶结点 Leaf Node」没有子结点的结点其两个指针都指向 $\text{null}$
结点「度 Degree」结点的子结点数量二叉树中度的范围是 0, 1, 2
结点「深度 Depth」 :根结点到该结点的层数;
结点「高度 Height」最远叶结点到该结点的层数
二叉树「高度」:二叉树中根结点到最远叶结点的层数;
- 「根结点 Root Node」二叉树最顶层的结点其没有父结点
- 「叶结点 Leaf Node」没有子结点的结点其两个指针都指向 $\text{null}$
- 结点所处「层 Level」从顶置底依次增加根结点所处层为 1
- 结点「度 Degree」结点的子结点数量二叉树中度的范围是 0, 1, 2
- 「边 Edge」连接两个结点的边即结点指针
- 二叉树「高度」:二叉树中根结点到最远叶结点走过边的数量;例如,有三层结点的二叉树的高度为 2
- 结点「深度 Depth」 :根结点到该结点走过边的数量;
- 结点「高度 Height」最远叶结点到该结点走过边的数量
![binary_tree_terminology](binary_tree.assets/binary_tree_terminology.png)
@ -140,9 +139,9 @@ comments: true
| | 完美二叉树 | 链表 |
| ----------------------------- | ---------- | ---------- |
| 二叉树第 $i$ 层的结点数量 | $2^{i-1}$ | $1$ |
| 高度为 $h$ 的二叉树的结点总数 | $2^h - 1$ | $h$ |
| 结点总数为 $n$ 的二叉树的高度 | $\log_2 n + 1$ | $n$ |
| 二叉树第 $i$ 层的结点数量 | $2^{i-1}$ | $1$ |
| 高度为 $h$ 的二叉树的结点总数 | $2^(h+1) - 1$ | $h$ |
| 结点总数为 $n$ 的二叉树的高度 | $\log_2 (n+1) - 1$ | $n$ |
</div>