hello-algo/docs/chapter_tree/avl_tree.md

845 lines
22 KiB
Markdown
Raw Normal View History

2022-12-11 02:44:48 +08:00
---
comments: true
---
# AVL 树 *
在「二叉搜索树」章节中提到,在进行多次插入与删除操作后,二叉搜索树可能会退化为链表。此时所有操作的时间复杂度都会由 $O(\log n)$ 劣化至 $O(n)$ 。
2022-12-04 08:22:37 +08:00
如下图所示,执行两步删除结点后,该二叉搜索树就会退化为链表。
2022-12-04 08:22:37 +08:00
![degradation_from_removing_node](avl_tree.assets/degradation_from_removing_node.png)
再比如,在以下完美二叉树中插入两个结点后,树严重向左偏斜,查找操作的时间复杂度也随之发生劣化。
![degradation_from_inserting_node](avl_tree.assets/degradation_from_inserting_node.png)
G. M. Adelson-Velsky 和 E. M. Landis 在其 1962 年发表的论文 "An algorithm for the organization of information" 中提出了「AVL 树」。**论文中描述了一系列操作使得在不断添加与删除结点后AVL 树仍然不会发生退化**,进而使得各种操作的时间复杂度均能保持在 $O(\log n)$ 级别。
换言之在频繁增删查改的使用场景中AVL 树可始终保持很高的数据增删查改效率,具有很好的应用价值。
## AVL 树常见术语
「AVL 树」既是「二叉搜索树」又是「平衡二叉树」,同时满足这两种二叉树的所有性质,因此又被称为「平衡二叉搜索树」。
### 结点高度
在 AVL 树的操作中,需要获取结点「高度 Height」所以给 AVL 树的结点类添加 `height` 变量。
=== "Java"
```java title="avl_tree.java"
/* AVL 树结点类 */
class TreeNode {
public int val; // 结点值
public int height; // 结点高度
public TreeNode left; // 左子结点
public TreeNode right; // 右子结点
public TreeNode(int x) { val = x; }
}
```
=== "C++"
```cpp title="avl_tree.cpp"
2022-12-11 02:44:48 +08:00
```
=== "Python"
2022-12-04 08:22:37 +08:00
```python title="avl_tree.py"
class AVLTreeNode:
def __init__(
self,
val=None,
height: int = 0,
left: typing.Optional["AVLTreeNode"] = None,
right: typing.Optional["AVLTreeNode"] = None
):
self.val = val
self.height = height
self.left = left
self.right = right
def __str__(self):
val = self.val
left_val = self.left.val if self.left else None
right_val = self.right.val if self.right else None
return "<AVLTreeNode: {}, leftAVLTreeNode: {}, rightAVLTreeNode: {}>".format(val, left_val, right_val)
```
=== "Go"
```go title="avl_tree.go"
2022-12-11 02:44:48 +08:00
```
=== "JavaScript"
```js title="avl_tree.js"
2022-12-11 02:44:48 +08:00
```
=== "TypeScript"
```typescript title="avl_tree.ts"
2022-12-11 02:44:48 +08:00
```
=== "C"
```c title="avl_tree.c"
2022-12-11 02:44:48 +08:00
```
=== "C#"
```csharp title="avl_tree.cs"
2022-12-11 02:44:48 +08:00
```
「结点高度」是最远叶结点到该结点的距离,即走过的「边」的数量。需要特别注意,**叶结点的高度为 0 ,空结点的高度为 -1** 。我们封装两个工具函数,分别用于获取与更新结点的高度。
=== "Java"
```java title="avl_tree.java"
/* 获取结点高度 */
int height(TreeNode node) {
// 空结点高度为 -1 ,叶结点高度为 0
return node == null ? -1 : node.height;
}
2022-12-04 08:22:37 +08:00
/* 更新结点高度 */
void updateHeight(TreeNode node) {
// 结点高度等于最高子树高度 + 1
node.height = Math.max(height(node.left), height(node.right)) + 1;
}
```
=== "C++"
```cpp title="avl_tree.cpp"
2022-12-11 02:44:48 +08:00
```
=== "Python"
```python title="avl_tree.py"
def height(node: typing.Optional[AVLTreeNode]) -> int:
"""
获取结点高度
Args:
node:起始结点
Returns: 高度 or -1
"""
# 空结点高度为 -1 ,叶结点高度为 0
if node is not None:
return node.height
return -1
def update_height(node: AVLTreeNode):
"""
更新结点高度
Args:
node: 要更新高度的结点
Returns: None
"""
# 结点高度等于最高子树高度 + 1
node.height = max([height(node.left), height(node.right)]) + 1
```
=== "Go"
```go title="avl_tree.go"
2022-12-11 02:44:48 +08:00
```
=== "JavaScript"
```js title="avl_tree.js"
2022-12-11 02:44:48 +08:00
```
=== "TypeScript"
```typescript title="avl_tree.ts"
2022-12-11 02:44:48 +08:00
```
=== "C"
```c title="avl_tree.c"
2022-12-11 02:44:48 +08:00
```
=== "C#"
```csharp title="avl_tree.cs"
2022-12-11 02:44:48 +08:00
```
### 结点平衡因子
结点的「平衡因子 Balance Factor」是 **结点的左子树高度减去右子树高度**,并定义空结点的平衡因子为 0 。同样地,我们将获取结点平衡因子封装成函数,以便后续使用。
=== "Java"
```java title="avl_tree.java"
/* 获取结点平衡因子 */
public int balanceFactor(TreeNode node) {
// 空结点平衡因子为 0
if (node == null) return 0;
// 结点平衡因子 = 左子树高度 - 右子树高度
return height(node.left) - height(node.right);
}
```
=== "C++"
```cpp title="avl_tree.cpp"
2022-12-11 02:44:48 +08:00
```
=== "Python"
```python title="avl_tree.py"
def balance_factor(node: AVLTreeNode) -> int:
"""
获取结点平衡因子
Args:
node: 要获取平衡因子的结点
Returns: 平衡因子
"""
# 空结点平衡因子为 0
if node is None:
return 0
# 结点平衡因子 = 左子树高度 - 右子树高度
return height(node.left) - height(node.right)
```
=== "Go"
```go title="avl_tree.go"
2022-12-11 02:44:48 +08:00
```
=== "JavaScript"
```js title="avl_tree.js"
2022-12-11 02:44:48 +08:00
```
=== "TypeScript"
```typescript title="avl_tree.ts"
2022-12-11 02:44:48 +08:00
```
=== "C"
```c title="avl_tree.c"
2022-12-11 02:44:48 +08:00
```
=== "C#"
```csharp title="avl_tree.cs"
2022-12-11 02:44:48 +08:00
```
2022-12-04 08:22:37 +08:00
2022-12-06 02:19:26 +08:00
!!! note
设平衡因子为 $f$ ,则一棵 AVL 树的任意结点的平衡因子皆满足 $-1 \le f \le 1$ 。
## AVL 树旋转
2022-12-04 08:22:37 +08:00
AVL 树的独特之处在于「旋转 Rotation」的操作其可 **在不影响二叉树中序遍历序列的前提下,使失衡结点重新恢复平衡。** 换言之,旋转操作既可以使树保持为「二叉搜索树」,也可以使树重新恢复为「平衡二叉树」。
2022-12-04 08:22:37 +08:00
我们将平衡因子的绝对值 $> 1$ 的结点称为「失衡结点」。根据结点的失衡情况,旋转操作分为 **右旋、左旋、先右旋后左旋、先左旋后右旋**,接下来我们来一起来看看它们是如何操作的。
2022-12-06 02:19:26 +08:00
### Case 1 - 右旋
2022-12-11 18:41:15 +08:00
如下图所示(结点下方为「平衡因子」),从底至顶看,二叉树中首个失衡结点是 **结点 3** 。我们聚焦在以该失衡结点为根结点的子树上,将该结点记为 `node` ,将其左子节点记为 `child` ,执行「右旋」操作。完成右旋后,该子树已经恢复平衡,并且仍然为二叉搜索树。
2022-12-04 08:22:37 +08:00
=== "Step 1"
![right_rotate_step1](avl_tree.assets/right_rotate_step1.png)
2022-12-04 08:22:37 +08:00
=== "Step 2"
![right_rotate_step2](avl_tree.assets/right_rotate_step2.png)
2022-12-04 08:22:37 +08:00
=== "Step 3"
![right_rotate_step3](avl_tree.assets/right_rotate_step3.png)
=== "Step 4"
![right_rotate_step4](avl_tree.assets/right_rotate_step4.png)
进而,如果结点 `child` 本身有右子结点(记为 `grandChild`),则需要在「右旋」中添加一步:将 `grandChild` 作为 `node` 的左子结点。
![right_rotate_with_grandchild](avl_tree.assets/right_rotate_with_grandchild.png)
“向右旋转” 是一种形象化的说法,实际需要通过修改结点指针实现,代码如下所示。
=== "Java"
```java title="avl_tree.java"
/* 右旋操作 */
TreeNode rightRotate(TreeNode node) {
TreeNode child = node.left;
TreeNode grandChild = child.right;
// 以 child 为原点,将 node 向右旋转
child.right = node;
node.left = grandChild;
// 更新结点高度
updateHeight(node);
updateHeight(child);
2022-12-11 02:44:48 +08:00
// 返回旋转后子树的根节点
return child;
}
```
=== "C++"
```cpp title="avl_tree.cpp"
2022-12-11 02:44:48 +08:00
```
=== "Python"
2022-12-04 08:22:37 +08:00
```python title="avl_tree.py"
def rightRotate(node: AVLTreeNode):
child = node.left
grand_child = child.right
# 以 child 为原点,将 node 向右旋转
child.right = node
node.left = grand_child
# 更新结点高度
update_height(node)
update_height(child)
# 返回旋转后子树的根节点
return child
```
2022-12-04 08:22:37 +08:00
=== "Go"
```go title="avl_tree.go"
2022-12-11 02:44:48 +08:00
```
2022-12-04 08:22:37 +08:00
=== "JavaScript"
```js title="avl_tree.js"
2022-12-11 02:44:48 +08:00
```
=== "TypeScript"
```typescript title="avl_tree.ts"
2022-12-11 02:44:48 +08:00
```
=== "C"
```c title="avl_tree.c"
2022-12-11 02:44:48 +08:00
```
=== "C#"
```csharp title="avl_tree.cs"
2022-12-11 02:44:48 +08:00
```
### Case 2 - 左旋
2022-12-11 18:41:15 +08:00
类似地,如果将取上述失衡二叉树的 “镜像” ,那么则需要「左旋」操作。观察发现,**「左旋」和「右旋」操作是镜像对称的,两者对应解决的两种失衡情况也是对称的**。
![left_rotate_with_grandchild](avl_tree.assets/left_rotate_with_grandchild.png)
2022-12-11 18:41:15 +08:00
根据对称性,我们可以很方便地从「右旋」推导出「左旋」。具体地,把所有的 `left` 替换为 `right` 、所有的 `right` 替换为 `left` 即可。
=== "Java"
```java title="avl_tree.java"
/* 左旋操作 */
private TreeNode leftRotate(TreeNode node) {
TreeNode child = node.right;
TreeNode grandChild = child.left;
// 以 child 为原点,将 node 向左旋转
child.left = node;
node.right = grandChild;
// 更新结点高度
updateHeight(node);
updateHeight(child);
2022-12-11 02:44:48 +08:00
// 返回旋转后子树的根节点
return child;
}
```
=== "C++"
```cpp title="avl_tree.cpp"
2022-12-11 02:44:48 +08:00
```
=== "Python"
```python title="avl_tree.py"
def leftRotate(node: AVLTreeNode):
child = node.right
grand_child = child.left
# 以 child 为原点,将 node 向左旋转
child.left = node
node.right = grand_child
# 更新结点高度
update_height(node)
update_height(child)
# 返回旋转后子树的根节点
return child
```
=== "Go"
```go title="avl_tree.go"
2022-12-11 02:44:48 +08:00
```
=== "JavaScript"
```js title="avl_tree.js"
2022-12-11 02:44:48 +08:00
```
=== "TypeScript"
```typescript title="avl_tree.ts"
2022-12-11 02:44:48 +08:00
```
=== "C"
```c title="avl_tree.c"
2022-12-11 02:44:48 +08:00
```
=== "C#"
```csharp title="avl_tree.cs"
2022-12-11 02:44:48 +08:00
```
### Case 3 - 先左后右
对于下图的失衡结点 3 **单一使用左旋或右旋都无法使子树恢复平衡**,此时需要「先左旋后右旋」,即先对 `child` 执行「左旋」,再对 `node` 执行「右旋」。
![left_right_rotate](avl_tree.assets/left_right_rotate.png)
### Case 4 - 先右后左
同理,取以上失衡二叉树的镜像,则需要「先右旋后左旋」,即先对 `child` 执行「右旋」,然后对 `node` 执行「左旋」。
![right_left_rotate](avl_tree.assets/right_left_rotate.png)
### 旋转的选择
2022-12-11 18:41:15 +08:00
下图描述的四种失衡情况与上述 Cases 一一对应,分别采用右旋、左旋、先右后左、先左后右的旋转组合。
![rotation_cases](avl_tree.assets/rotation_cases.png)
具体地,需要使用 **失衡结点的平衡因子、较高一侧子结点的平衡因子** 来确定失衡结点属于上图中的哪种情况。
<div class="center-table" markdown>
| 失衡结点的平衡因子 | 子结点的平衡因子 | 应采用的旋转方法 |
| ------------------ | ---------------- | ---------------- |
| $>0$ (即左偏树) | $\geq 0$ | 右旋 |
| $>0$ (即左偏树) | $<0$ | 先左旋后右旋 |
| $<0$ 即右偏树 | $\leq 0$ | 左旋 |
| $<0$ 即右偏树 | $>0$ | 先右旋后左旋 |
</div>
2022-12-11 18:41:15 +08:00
根据以上规则,我们将旋转操作封装成一个函数。至此,**我们可以使用此函数来旋转各种失衡情况,使失衡结点重新恢复平衡**。
=== "Java"
```java title="avl_tree.java"
/* 执行旋转操作,使该子树重新恢复平衡 */
TreeNode rotate(TreeNode node) {
// 获取结点 node 的平衡因子
int balanceFactor = balanceFactor(node);
// 左偏树
if (balanceFactor > 1) {
if (balanceFactor(node.left) >= 0) {
// 右旋
return rightRotate(node);
} else {
// 先左旋后右旋
node.left = leftRotate(node.left);
return rightRotate(node);
}
}
// 右偏树
if (balanceFactor < -1) {
if (balanceFactor(node.right) <= 0) {
// 左旋
return leftRotate(node);
} else {
// 先右旋后左旋
node.right = rightRotate(node.right);
return leftRotate(node);
}
}
// 平衡树,无需旋转,直接返回
return node;
}
```
2022-12-04 08:22:37 +08:00
=== "C++"
```cpp title="avl_tree.cpp"
2022-12-11 02:44:48 +08:00
```
=== "Python"
```python title="avl_tree.py"
def rotate(node: AVLTreeNode):
"""
执行旋转操作,使该子树重新恢复平衡
Args:
node: 要旋转的根结点
Returns: 旋转后的根结点
"""
# 获取结点 node 的平衡因子
factor = balance_factor(node)
# 左偏树
if factor > 1:
if balance_factor(node.left) >= 0:
# 右旋
return right_rotate(node)
else:
# 先左旋后右旋
node.left = left_rotate(node.left)
return right_rotate(node)
# 右偏树
elif factor < -1:
if balance_factor(node.right) <= 0:
# 左旋
return left_rotate(node)
else:
# 先右旋后左旋
node.right = right_rotate(node.right)
return left_rotate(node)
# 平衡树,无需旋转,直接返回
return node
```
=== "Go"
```go title="avl_tree.go"
2022-12-11 02:44:48 +08:00
```
=== "JavaScript"
```js title="avl_tree.js"
2022-12-11 02:44:48 +08:00
```
=== "TypeScript"
```typescript title="avl_tree.ts"
2022-12-11 02:44:48 +08:00
```
=== "C"
```c title="avl_tree.c"
2022-12-11 02:44:48 +08:00
```
=== "C#"
```csharp title="avl_tree.cs"
2022-12-11 02:44:48 +08:00
```
## AVL 树常用操作
### 插入结点
2022-12-11 18:41:15 +08:00
「AVL 树」的结点插入操作与「二叉搜索树」主体类似。不同的是,在插入结点后,从该结点到根结点的路径上会出现一系列「失衡结点」。所以,**我们需要从该结点开始,从底至顶地执行旋转操作,使所有失衡结点恢复平衡**。
=== "Java"
```java title="avl_tree.java"
/* 插入结点 */
TreeNode insert(int val) {
root = insertHelper(root, val);
return root;
}
2022-12-04 08:22:37 +08:00
/* 递归插入结点(辅助函数) */
TreeNode insertHelper(TreeNode node, int val) {
if (node == null) return new TreeNode(val);
/* 1. 查找插入位置,并插入结点 */
if (val < node.val)
node.left = insertHelper(node.left, val);
else if (val > node.val)
node.right = insertHelper(node.right, val);
else
return node; // 重复结点不插入,直接返回
updateHeight(node); // 更新结点高度
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
node = rotate(node);
// 返回子树的根节点
return node;
}
```
=== "C++"
```cpp title="avl_tree.cpp"
2022-12-11 02:44:48 +08:00
```
=== "Python"
```python title="avl_tree.py"
def insert(val) -> AVLTreeNode:
"""
插入结点
Args:
val: 结点的值
Returns:
node: 插入结点后的根结点
"""
root = insert_helper(root, val)
return root
def insert_helper(node: typing.Optional[AVLTreeNode], val: int) -> AVLTreeNode:
"""
递归插入结点(辅助函数)
Args:
node: 要插入的根结点
val: 要插入的结点的值
Returns: 插入结点后的根结点
"""
if node is None:
return AVLTreeNode(val)
# 1. 查找插入位置,并插入结点
if val < node.val:
node.left = insert_helper(node.left, val)
elif val > node.val:
node.right = insert_helper(node.right, val)
else:
# 重复结点不插入,直接返回
return node
# 更新结点高度
update_height(node)
# 2. 执行旋转操作,使该子树重新恢复平衡
return rotate(node)
```
=== "Go"
```go title="avl_tree.go"
2022-12-11 02:44:48 +08:00
```
=== "JavaScript"
```js title="avl_tree.js"
2022-12-11 02:44:48 +08:00
```
=== "TypeScript"
```typescript title="avl_tree.ts"
2022-12-11 02:44:48 +08:00
```
=== "C"
```c title="avl_tree.c"
2022-12-11 02:44:48 +08:00
```
=== "C#"
```csharp title="avl_tree.cs"
2022-12-11 02:44:48 +08:00
```
2022-12-04 08:22:37 +08:00
### 删除结点
「AVL 树」删除结点操作与「二叉搜索树」删除结点操作总体相同。类似地,**在删除结点后,也需要从底至顶地执行旋转操作,使所有失衡结点恢复平衡**。
=== "Java"
```java title="avl_tree.java"
/* 删除结点 */
TreeNode remove(int val) {
root = removeHelper(root, val);
return root;
}
/* 递归删除结点(辅助函数) */
TreeNode removeHelper(TreeNode node, int val) {
if (node == null) return null;
/* 1. 查找结点,并删除之 */
if (val < node.val)
node.left = removeHelper(node.left, val);
else if (val > node.val)
node.right = removeHelper(node.right, val);
else {
if (node.left == null || node.right == null) {
TreeNode child = node.left != null ? node.left : node.right;
// 子结点数量 = 0 ,直接删除 node 并返回
if (child == null)
return null;
// 子结点数量 = 1 ,直接删除 node
else
node = child;
} else {
// 子结点数量 = 2 ,则将中序遍历的下个结点删除,并用该结点替换当前结点
TreeNode temp = minNode(node.right);
node.right = removeHelper(node.right, temp.val);
node.val = temp.val;
}
}
updateHeight(node); // 更新结点高度
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
node = rotate(node);
// 返回子树的根节点
return node;
}
/* 获取最小结点 */
TreeNode minNode(TreeNode node) {
if (node == null) return node;
// 循环访问左子结点,直到叶结点时为最小结点,跳出
while (node.left != null) {
node = node.left;
}
return node;
}
2022-12-05 12:24:48 +08:00
```
=== "C++"
```cpp title="avl_tree.cpp"
2022-12-11 02:44:48 +08:00
```
=== "Python"
```python title="avl_tree.py"
def remove(val: int):
"""
删除结点
Args:
val: 要删除的结点的值
Returns:
"""
root = remove_helper(root, val)
return root
def remove_helper(node: typing.Optional[AVLTreeNode], val: int) -> typing.Optional[AVLTreeNode]:
"""
递归删除结点(辅助函数)
Args:
node: 删除的起始结点
val: 要删除的结点的值
Returns: 删除目标结点后的起始结点
"""
if node is None:
return None
# 1. 查找结点,并删除之
if val < node.val:
node.left = remove_helper(node.left, val)
elif val > node.val:
node.right = remove_helper(node.right, val)
else:
if node.left is None or node.right is None:
child = node.left or node.right
# 子结点数量 = 0 ,直接删除 node 并返回
if child is None:
return None
# 子结点数量 = 1 ,直接删除 node
else:
node = child
else: # 子结点数量 = 2 ,则将中序遍历的下个结点删除,并用该结点替换当前结点
temp = min_node(node.right)
node.right = remove_helper(node.right, temp.val)
node.val = temp.val
# 更新结点高度
update_height(node)
# 2. 执行旋转操作,使该子树重新恢复平衡
return rotate(node)
def min_node(node: typing.Optional[AVLTreeNode]) -> typing.Optional[AVLTreeNode]:
# 获取最小结点
if node is None:
return None
# 循环访问左子结点,直到叶结点时为最小结点,跳出
while node.left is not None:
node = node.left
return node
```
=== "Go"
```go title="avl_tree.go"
2022-12-11 02:44:48 +08:00
```
=== "JavaScript"
```js title="avl_tree.js"
2022-12-11 02:44:48 +08:00
```
=== "TypeScript"
```typescript title="avl_tree.ts"
2022-12-11 02:44:48 +08:00
```
=== "C"
```c title="avl_tree.c"
2022-12-11 02:44:48 +08:00
```
=== "C#"
```csharp title="avl_tree.cs"
2022-12-11 02:44:48 +08:00
```
### 查找结点
「AVL 树」的结点查找操作与「二叉搜索树」一致,在此不再赘述。
2022-12-11 18:41:15 +08:00
## AVL 树典型应用
2022-12-14 01:30:04 +08:00
- 组织存储大型数据,适用于高频查找、低频增删场景;
2022-12-11 18:41:15 +08:00
- 用于建立数据库中的索引系统;
!!! question "为什么红黑树比 AVL 树更受欢迎?"
红黑树的平衡条件相对宽松,因此在红黑树中插入与删除结点所需的旋转操作相对更少,结点增删操作相比 AVL 树的效率更高。